Сложностные классы. Вычисления с оракулом — различия между версиями
Строка 5: | Строка 5: | ||
Сложность алгоритма - величина, характеризующая длину описания алгоритма или громоздкость процессов его применения к исходным данным. | Сложность алгоритма - величина, характеризующая длину описания алгоритма или громоздкость процессов его применения к исходным данным. | ||
− | В основных понятиях теории сложности используются такие | + | В основных понятиях теории сложности используются такие величины как время работы и объем затрачиваемой памяти. |
{{Определение | {{Определение |
Версия 18:42, 4 июня 2012
В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на её размерность. Какие задачи могут быть решены на ЭВМ за реальное время?
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы P, NP и т.д.
Сложность алгоритма - величина, характеризующая длину описания алгоритма или громоздкость процессов его применения к исходным данным.
В основных понятиях теории сложности используются такие величины как время работы и объем затрачиваемой памяти.
Определение: |
— время работы программы р на входе х. |
Определение: |
— объем памяти, требуемый программе р для выполнения на входе х. |
Введём понятия и , аналогичным образом определяются классы и (префикс соответствует детерминизму, а — недетерминизму). Через них будет дано определение многим сложностным классам.
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено и , где — длина входа. |
Вычисление с оракулом
В теории вычислений и теории сложности Машиной с оракулом называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем запуском оракула на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных.
Определение: |
Оракул — программа | , вычисляющая за времени, верно ли, что .
Сложностный класс задач, решаемых алгоритмом из класса
с оракулом для языка , обозначают . Если — множество языков, то .