PCP-теорема — различия между версиями
Filchenko (обсуждение | вклад) (убрана лемма, доказанная вдругой статье) |
Filchenko (обсуждение | вклад) м (\log) |
||
Строка 2: | Строка 2: | ||
|id=pcp_th | |id=pcp_th | ||
|about=<tex>\mathrm{PCP}</tex> теорема | |about=<tex>\mathrm{PCP}</tex> теорема | ||
− | |statement=<tex>\mathrm{PCP}[log | + | |statement=<tex>\mathrm{PCP}[\log n, O(1)] = \mathrm{NP}</tex> |
}} | }} | ||
Строка 31: | Строка 31: | ||
доказательство <tex>\pi</tex> прувера <tex>\mathcal{P}</tex>. Обозначим <tex>\pi_i</tex> <tex>i</tex>-й бит доказательства (не его значение), будем рассматривать <tex>\pi_i</tex> как переменные в <tex>3SAT</tex> формуле. | доказательство <tex>\pi</tex> прувера <tex>\mathcal{P}</tex>. Обозначим <tex>\pi_i</tex> <tex>i</tex>-й бит доказательства (не его значение), будем рассматривать <tex>\pi_i</tex> как переменные в <tex>3SAT</tex> формуле. | ||
− | По данному графу <tex>G</tex>, <tex>\mathcal{R}</tex> нумерует все <tex>N = 2^Q = 2^{O(log | + | По данному графу <tex>G</tex>, <tex>\mathcal{R}</tex> нумерует все <tex>N = 2^Q = 2^{O(\log n} = poly(n)</tex> возможные |
случайные строки, которые может выбрать верифаер <tex>V</tex>. Обозначим их <tex>Q_1 ... Q_{poly(n)}</tex>. | случайные строки, которые может выбрать верифаер <tex>V</tex>. Обозначим их <tex>Q_1 ... Q_{poly(n)}</tex>. | ||
Строка 136: | Строка 136: | ||
===Коды с коррекцией ошибок=== | ===Коды с коррекцией ошибок=== | ||
{{Определение | {{Определение | ||
− | |definition=Кодом с коррекцией ошибок называется набор строк <tex>C \subset \Sigma^n</tex>, где <tex>\Sigma</tex> некоторый конечный алфавит. <tex>n</tex> называется размером блока, а <tex>log_{|\Sigma|}|C|</tex> уровнем кода. Расстоянием кода называется <tex>min_{x \neq y \in C} dist(x,y)</tex>, где <tex>dist(\cdot,\cdot)</tex> — расстояние Хэмминга. | + | |definition=Кодом с коррекцией ошибок называется набор строк <tex>C \subset \Sigma^n</tex>, где <tex>\Sigma</tex> некоторый конечный алфавит. <tex>n</tex> называется размером блока, а <tex>\log_{|\Sigma|}|C|</tex> уровнем кода. Расстоянием кода называется <tex>min_{x \neq y \in C} dist(x,y)</tex>, где <tex>dist(\cdot,\cdot)</tex> — расстояние Хэмминга. |
}} | }} | ||
Строка 236: | Строка 236: | ||
|proof=Сведем удовлетворимость графа условий к нашей задаче. Пусть <tex>G</tex> задача удовлетворимости некоторого графа с <tex>|\Sigma|=3</tex>. Идей состоит в повторении применения основной теоремы до тех пор, пока число неудовлетворенности не станет постоянным. | |proof=Сведем удовлетворимость графа условий к нашей задаче. Пусть <tex>G</tex> задача удовлетворимости некоторого графа с <tex>|\Sigma|=3</tex>. Идей состоит в повторении применения основной теоремы до тех пор, пока число неудовлетворенности не станет постоянным. | ||
− | Пусть <tex>G_0 = G</tex> и <tex>G_i(i \ge 1)</tex> — результат применения основной теоремы к <tex>G_{i-1}</tex>. Тогда для <tex>i \ge 1</tex> <tex>G</tex> — граф условий с алфавитом <tex>\Sigma_0</tex>. Пусть <tex>E_0</tex> — множество ребер <tex>G_0<tex> и <tex>k=log|E_0|=O(log n)</tex>. | + | Пусть <tex>G_0 = G</tex> и <tex>G_i(i \ge 1)</tex> — результат применения основной теоремы к <tex>G_{i-1}</tex>. Тогда для <tex>i \ge 1</tex> <tex>G</tex> — граф условий с алфавитом <tex>\Sigma_0</tex>. Пусть <tex>E_0</tex> — множество ребер <tex>G_0<tex> и <tex>k=\log|E_0|=O(\log n)</tex>. |
Полнота показывается тривиально: если <tex>UNSAT(G_0)=0</tex>, то для всех <tex>i</tex> <tex>UNSAT(G_i)=0</tex>. Для обоснованности рассмотрим <tex>UNSAT(G_0) > 0</tex>. Если для некоторого <tex>i*<k</tex>, <tex>UNSAT(G_{i*}) \ge \frac \alpha 2</tex>, то из основной теоремы следует, что для всех <tex>i>i*</tex> <tex>UNSAT(G_i)\ge \alpha</tex>. На остальные <tex>i</tex> это распространяется по индукции <tex>UNSAT(G_i) \ge min(2^i UNSAT(G_0), \alpha)</tex>. | Полнота показывается тривиально: если <tex>UNSAT(G_0)=0</tex>, то для всех <tex>i</tex> <tex>UNSAT(G_i)=0</tex>. Для обоснованности рассмотрим <tex>UNSAT(G_0) > 0</tex>. Если для некоторого <tex>i*<k</tex>, <tex>UNSAT(G_{i*}) \ge \frac \alpha 2</tex>, то из основной теоремы следует, что для всех <tex>i>i*</tex> <tex>UNSAT(G_i)\ge \alpha</tex>. На остальные <tex>i</tex> это распространяется по индукции <tex>UNSAT(G_i) \ge min(2^i UNSAT(G_0), \alpha)</tex>. |
Версия 21:44, 6 июня 2012
Теорема ( | теорема):
Классическое доказательство теоремы громоздкое и довольно сложное для восприятия, рассмотрим вариант докаательства, предложенный Динуром. Оно основано на тос, что -теорема эквивалентна . -трудности задачи
Содержание
Определения и леммы, используемые в доказательстве
Определение: |
назовем множеством условий над множеством переменных . |
Определение: |
Число неудовлетворенности | — минимальное подмножество неудовлетворенных условий для любых возможных назначений . удовлетворимо тогда и только тогда, когда . Если же неудовлетворимо, тогда .
Графы условий
Нам понадобятся графы ограничений для двух переменных, которые определяются следующим образом:
Определение: |
| называется графом условий, если:
Присваивание это отображение , которое назначает каждой вершине из
значение из . Для любого присвоения определим и .
Назовем
числом неудовлетворенности графа . Размером графа будем считать размер его описанияЛемма: |
Для заданного графа условий , где проверка утверждения — -трудная задача. |
Доказательство: |
Сведем | к нашей задаче. Дан граф , алфавит для трех цветов. Оснастим ребра условиями неравенства. Очевидно, что тогда и только тогда, когда для графа условий и графа, лежащего в его основе).
Экспандер графы
Экспандер графы играют важную роль во многих теоретических результатах.
Определение: |
-регулярный граф. Положим равным количеству ребер их подмножества в его дополнение. Определим реберное расширение как |
Лемма (О экспандерах): |
Существует и такие, что есть построимое за полиномиальное время семейство -регулярных графов с вершинами таких, что . |
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Лемма: |
Пусть -регулярный граф, а его реберное расширение. Тогда |
Определение: |
Собственным числом графа | называют собственное число его матрицы смежности.
Лемма: |
Пусть -регулярный граф со вторым по величине собственным числом . Пусть множество ребер. Вероятность того, что случайный путь, начинающийся со случайного ребра из на шаге попадет ограничена . |
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Операции на графах условий
Для доказательства
теоремы потребуются три операции над графами уловий:- Препроцессинг. Простая операция, сохраняющая чило неудовлетворенности(примерно) и размер алфавита, но делающая граф лучше.
- Усиление. Эта операция увеоичивает чило неудовлетворенности за счет увеличения размера алфавита.
- Композицияю Эта операция уменьшает размер алфавита, сохраняя число неудовлетворенности(приблизительно).
Препроцессинг
Под хорошим графом будем понимать регулярный, фиксированной степени экспандер граф.
Лемма (Препроцессинг): |
существуют константы и такие, что любой граф условий может быть преобразован в граф условий такой, что:
|
Заметим, что третий пункт теммы гарантирует поддержание полноты, т.е. если
, то и . Доказательство этой леммы состоит из двух следующих лемм ( ).Лемма (Константная степень): |
Любой граф условий может быть преобразован в -регулярный граф условий такой, что =2 |
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Эта лемма известна как экспандер-замена(expander-replacement transformation).
Лемма (О расширении): |
Пусть некоторые константы. Любой -регулярный граф условий может быть преобразован в такой, что:
|
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Усиление
Это новая операция на системах условий, которая увеличивает число неудовлетворенности. Пусть
. Определим как следующий граф условий:- Веришины совпадают с вершинами
- Ребра: и соединены ребрами в , если количество путей длины из в в графе равно
- Алфавит: алфавит графа , где каждой вершине сопоставлены значения ее соседей, достижимых за шагов.
- Условия: Условия сопоставленные ребру удовлетворены, если назначения для и согласованы с назначениями, удовлетворяющими условия, порожденные соседями и .
Если
тогда очевидно . Интереснее доказательство того, что .Лемма (Усиление): |
Пусть и произвольные константы. Тогда существует константа и для любого -регулярного графа условий с собственными циклами и ,. |
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Поскольку
, из жтой леммы следует что . Это основная техническая лемма.Композиция
Определение: |
Тестер присвоений с алфавитом
| и вероятностью отклонения это полиномиальное преобразование , принимающее на вход схему над будевыми переменными и дающую на выходе граф условий такой, что (в условном графе играет одновременно две роли: переменных и вершин. подразумевает, что некоторые вершины из определены с помощью переменных ). Пусть и — присваивание.
Следует заметить, что не накладывается никаких ограничений ни на время работы ни на . Мы игнорируем размер схемы , которая может быть экспоненциальна относительно .
Лемма (Композиция): |
Пусть существует тестер присвоений с константной вероятностью отклонения и алфавитом , . Тогда существует , зависящая только от , такая что любой граф условий может быть преобразован в , обозначаемый , такой что и |
Доказательство: |
см. The PCP Theorem by Gap Amplification, Irit Dinur, 2005 |
Основная теорема
Основываясь на операциях с графами условий мы можем доказать основную теорему.
Теорема (Основная теорема): |
Для любого , существуют константы и такие, что для данного графа условий за полиномиальное время можно построить граф условий такой, что:
|
Доказательство: |
Построим по следующим образом: .
Проверим выполнение условий теоремы. Размер линеен относительно размера , поскольку на каждом шагу увеличивался линейно. Полнота явно поддерживается на каждом шаге. Теперь выберем . Пусть . Таким образом, |
Доказательство PCP теоремы
Лемма: |
Следствием из основной теоремы является -трудность . |
Доказательство: |
Сведем удовлетворимость графа условий к нашей задаче. Пусть задача удовлетворимости некоторого графа с . Идей состоит в повторении применения основной теоремы до тех пор, пока число неудовлетворенности не станет постоянным.Пусть и — результат применения основной теоремы к . Тогда для — граф условий с алфавитом . Пусть — множество ребер .Полнота показывается тривиально: если , то для всех . Для обоснованности рассмотрим . Если для некоторого , , то из основной теоремы следует, что для всех . На остальные это распространяется по индукции .Если Такми образом , то . Конечно, . Таким образом . -трудная. Достичь обоснованности можно последовательным повторением раз. Тоесть создать новые условия, представляющие собой всех возможных -наборов прежних условий. Конечно, при этом количество запросов на условие увеличится до . |
Дополнительные материалы
- Linial and A. Wigderson. Expander graphs and their applications. Lecture notes of a course, 2003.
- Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42(6, part 1):1710–1722, 1996. Codes and complexity.
- C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. Journal of Computer and System Sciences, 3:425–440, 1991.
- Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proofs of the PCP theorem. In Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS), 2004.