QpmtnriLmax — различия между версиями
(→Алгоритм решения) |
(→Постановка задачи) |
||
Строка 4: | Строка 4: | ||
==Постановка задачи== | ==Постановка задачи== | ||
− | Рассмотрим | + | Рассмотрим задачу на нахождение расписания: |
# У нас есть несколько машин, работающих параллельно. У всех машин разные скорости выполнения работ. | # У нас есть несколько машин, работающих параллельно. У всех машин разные скорости выполнения работ. |
Версия 23:36, 8 июня 2012
Постановка задачи
Рассмотрим задачу на нахождение расписания:
- У нас есть несколько машин, работающих параллельно. У всех машин разные скорости выполнения работ.
- Есть несколько заданий, каждое имеет своё время появления и время окончания .
- Работа может быть прервана и продолжена позже.
Требуется минимизировать опоздание
Алгоритм решения
Как в задаче сведем задачу к поиску потока сети. Также будем использовать бинарный поиск.
Пусть
упорядоченная последовательность всех значений и . Определим произвольный интервал-узел на исходной сети (Рис. 1) для .Расширим эту сеть. Обозначим через
набор предшественников узла , тогда замененная нами подсеть (Рис. 2.1) определяется как . Расширение сети показано на Рис. 2.2.Cчитаем, что станки индексируются в порядке невозрастания скоростей
, кроме того .Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с емкостью и для всех и существует дуга из в с емкостью .Для каждой вершины
существуют вышеуказанные расширения. Кроме того, мы сохраняем дуги из в емкостью и дуги из в емкостью (Рис. 1).Теорема: |
Следующие свойства эквивалентны:
(a) Существует допустимое расписание. (b) В расширенной сети существует поток от до со значением |
Доказательство: |
Рассмотрим в расширенной сети поток величиной . Обозначим через общий поток, который идет от до . Заметим, что . Достаточно показать, что для каждого подмножества выполняется . Это означает, что условие выполняется и требования к обработке могут быть запланированы как для . Рассмотрим подсеть в расширенной сети индуцированной и соответствующие части потока. Фрагмент частичного потока, который проходит через ограничен. Таким образом, мы имеем . То, что равенство справедливо, может рассматриваться как следствие. Если , то. В противном случае . Предположим, что допустимое расписание существует. Для и пусть является "объемом работ", который будет выполняться в интервале в соответствии с нашим возможным расписанием. Тогда для всех и произвольных наборов , неравенство
выполняется. Кроме того, для у нас . Остается показать, что можно отправить от до в расширенной сети. Такой поток существует, если и значение ограничено величиной минимального среза части сети с истоками и стоком . Тем не менее, это значение
Используя и правую часть , получаемчто и является искомым неравенством. |
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, получается алгоритм со сложностью , потому как , ограничен , при .Задача
представляет собой частный случай , и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, и Rinnooy Kan разработали алгоритм работающий за специально для этого случая.Утверждение: |
Задача может быть решена за шагов. |
Решение С другой стороны, решение эквивалентно нахождению наименьшего , такого, что задача с допустимым временным интервалом имеет решение. эквивалентно нахождению такого наименьшего , такого, что задача с временным интервалом или имеет решение. |
Таким образом, задачи
и симметричны.Источники
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8