Сортировка Хана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 40: Строка 40:
  
 
Данный алгоритм базируется на следующей лемме:
 
Данный алгоритм базируется на следующей лемме:
{{Лемма
+
{{Лемма1
 
|id=lemma1.  
 
|id=lemma1.  
 
|statement=
 
|statement=
Строка 67: Строка 67:
 
==Сортировка на маленьких целых==
 
==Сортировка на маленьких целых==
 
Для лучшего понимания действия алгоритма и материала, изложенного в данной статье, в целом, ниже представлены несколько полезных лемм.  
 
Для лучшего понимания действия алгоритма и материала, изложенного в данной статье, в целом, ниже представлены несколько полезных лемм.  
{{Лемма
+
{{Лемма2
 
|id=lemma2.  
 
|id=lemma2.  
 
|statement=
 
|statement=
Строка 73: Строка 73:
 
|proof=
 
|proof=
 
}}
 
}}
{{Лемма
+
{{Лемма3
 
|id=lemma3.  
 
|id=lemma3.  
 
|statement=
 
|statement=
Строка 80: Строка 80:
 
Так как мы можем делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, мы можем упаковать медианы из первого, второго, ..., <tex>g</tex>-о чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex>  из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
 
Так как мы можем делать попарное сравнение <tex>g</tex> чисел в одном контейнере с <tex>g</tex> числами в другом и извлекать большие числа из одного контейнера и меньшие из другого за константное время, мы можем упаковать медианы из первого, второго, ..., <tex>g</tex>-о чисел из 5 контейнеров в один контейнер за константное время. Таким образом набор <tex>S</tex>  из медиан теперь содержится в <tex>n/(5g)</tex> контейнерах. Рекурсивно находим медиану <tex>m</tex> в <tex>S</tex>. Используя <tex>m</tex> уберем хотя бы <tex>n/4</tex> чисел среди <tex>n</tex>. Затем упакуем оставшиеся из <tex>n/g</tex> контейнеров в <tex>3n/4g</tex> контейнеров и затем продолжим рекурсию.
 
}}
 
}}
{{Лемма
+
{{Лемма4
 
|id=lemma4.  
 
|id=lemma4.  
 
|statement=
 
|statement=
 
Если <tex>g</tex> целых чисел, в сумме использующие <tex>(logn)/2</tex> бит, упакованы в один контейнер, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы за время <tex>O((n/g)logg)</tex>, с использованием <tex>O(n/g)</tex> места.
 
Если <tex>g</tex> целых чисел, в сумме использующие <tex>(logn)/2</tex> бит, упакованы в один контейнер, тогда <tex>n</tex> чисел в <tex>n/g</tex> контейнерах могут быть отсортированы за время <tex>O((n/g)logg)</tex>, с использованием <tex>O(n/g)</tex> места.
 
|proof=
 
|proof=
 +
Так как используется только <tex>(logn)/2</tex> бит в каждом контейнере для хранения <tex>g</tex> чисел, мы можем использовать bucket sorting чтобы отсортировать все контейнеры. представляя каждый как число, что занимает <tex>O(n/g)</tex> времени и места. Потому, что мы используем <tex>(logn)/2</tex> бит на контейнер нам понадобится <tex>sqrt {n}</tex>
 
}}
 
}}

Версия 23:26, 11 июня 2012

Сортировка Хана (Yijie Han) — сложный алгоритм сортировки целых чисел со сложностью [math]O(n \log\log n)[/math], где [math]n[/math] — количество элементов для сортировки.

Данная статья писалась на основе брошюры Хана, посвященной этой сортировке. Изложение материала в данной статье идет примерно в том же порядке, в каком она предоставлена в работе Хана.

Алгоритм

Алгоритм построен на основе экспоненциального поискового дерева (далее — Э.П.дерево) Андерсона (Andersson's exponential search tree). Сортировка происходит за счет вставки целых чисел в Э.П.дерево.

Andersson's exponential search tree

Э.П.дерево с [math]n[/math] листьями состоит из корня [math]r[/math] и [math]n^e[/math] (0<[math]e[/math]<1) Э.П.поддеревьев, в каждом из которых [math]n^{1 - e}[/math] листьев; каждое Э.П.поддерево является сыном корня [math]r[/math]. В этом дереве [math]O(n \log\log n)[/math] уровней. При нарушении баланса дерева, необходимо балансирование, которое требует [math]O(n \log\log n)[/math] времени при [math]n[/math] вставленных целых числах. Такое время достигается за счет вставки чисел группами, а не по одиночке, как изначально предлагает Андерссон.

Необходимая информация

Определение:
Контейнер — объект определенного типа, содержащий обрабатываемый элемент. Например __int32, __int64, и т.д.


Определение:
Алгоритм сортирующий [math]n[/math] целых чисел из множества [math]\{0, 1, \ldots, m - 1\}[/math] называется консервативным, если длина контейнера (число бит в контейнере), является [math]O(\log(m + n))[/math]. Если длина больше, то алгоритм не консервативный.


Определение:
Если мы сортируем целые числа из множества {0, 1, ..., [math]m[/math] - 1} с длиной контейнера [math]klog(m + n)[/math] с [math]k[/math] >= 1, тогда мы сортируем с не консервативным преимуществом [math]k[/math].


Определение:
Для множества [math]S[/math] определим

min([math]S[/math]) = min([math]a[/math]:[math]a[/math] принадлежит [math]S[/math]) max([math]S[/math]) = max([math]a[/math]:[math]a[/math] принадлежит [math]S[/math])

Набор [math]S1[/math] < [math]S2[/math] если max([math]S1[/math]) <= min([math]S2[/math])


Уменьшение числа бит в числах

Один из способов ускорить сортировку — уменьшить число бит в числе. Один из способов уменьшить число бит в числе — использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий [math]O(m)[/math] памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до [math]O(n)[/math]. Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование для всех чисел хранимых в контейнере. Для этого используется хэш функция для хэширования [math]n[/math] чисел в таблицу размера [math]O(n^2)[/math] за константное время, без коллизий. Для этого используется хэш модифицированная функция авторства: Dierzfelbinger и Raman.

Алгоритм: Пусть целое число [math]b \gt = 0[/math] и пусть [math]U = \{0, \ldots, 2^b - 1\}[/math]. Класс [math]H_{b,s}[/math] хэш функций из [math]U[/math] в [math]\{0, \ldots, 2^s - 1\}[/math] определен как [math]H_{b,s} = \{h_{a} \mid 0 \lt a \lt 2^b, a \equiv 1 (\mod 2)\}[/math] и для всех [math]x[/math] из [math]U: h_{a}(x) = (ax \mod 2^b) div 2^{b - s}[/math].

Данный алгоритм базируется на следующей лемме: Шаблон:Лемма1

Взяв [math]s = 2logn[/math] мы получим хэш функцию [math]h_{a}[/math] которая захэширует [math]n[/math] чисел из [math]U[/math] в таблицу размера [math]O(n^2)[/math] без коллизий. Очевидно, что [math]h_{a}(x)[/math] может быть посчитана для любого [math]x[/math] за константное время. Если мы упакуем несколько чисел в один контейнер так, что они разделены несколькими битами нулей, мы спокойно сможем применить [math]h_{a}[/math] ко всему контейнеру, а в результате все хэш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш знчения вовлечены только (mod [math]2^b[/math]) и (div [math]2^{b - s}[/math]).

Такая хэш функция может быть найдена за [math]O(n^3)[/math].

Следует отметить, что несмотря на размер таблицы [math]O(n^2)[/math], потребность в памяти не превышает [math]O(n)[/math] потому, что хэширование используется только для уменьшения количества бит в числе.

Signature sorting

В данной сортировке используется следующий алгоритм:

Предположим, что [math]n[/math] чисел должны быть сортированы, и в каждом [math]logm[/math] бит. Мы рассматриваем, что в каждом числе есть [math]h[/math] сегментов, в каждом из которых [math]log(m/h)[/math] бит. Теперь мы применяем хэширование ко всем сегментам и получаем [math]2hlogn[/math] бит хэшированных значений для каждого числа. После сортировки на хэшированных значениях для всех начальных чисел начальная задача по сортировке [math]n[/math] чисел по [math]m[/math] бит в каждом стала задачей по сортировке [math]n[/math] чисел по [math]log(m/h)[/math] бит в каждом.

Так же, рассмотрим проблему последующего разделения. Пусть [math]a_{1}[/math], [math]a_{2}[/math], ..., [math]a_{p}[/math][math]p[/math] чисел и [math]S[/math] — множество чисeл. Мы хотим разделить [math]S[/math] в [math]p + 1[/math] наборов таких, что: [math]S_{0}[/math] < {[math]a_{1}[/math]} < [math]S_{1}[/math] < {[math]a_{2}[/math]} < ... < {[math]a_{p}[/math]} < [math]S_{p}[/math]. Т.к. мы используем signature sorting, до того как делать вышеописанное разделение, мы поделим биты в [math]a_{i}[/math] на [math]h[/math] сегментов и возьмем некоторые из них. Мы так же поделим биты для каждого числа из [math]S[/math] и оставим только один в каждом числе. По существу для каждого [math]a_{i}[/math] мы возьмем все [math]h[/math] сегментов. Если соответствующие сегменты [math]a_{i}[/math] и [math]a_{j}[/math] совпадают, то нам понадобится только один. Сегменты, которые мы берем для числа в [math]S[/math], — сегмент, который выделяется из [math]a_{i}[/math]. Таким образом мы преобразуем начальную задачу о разделении [math]n[/math] чисел в [math]logm[/math] бит в несколько задач на разделение с числами в [math]log(m/h)[/math] бит.

Пример:

[math]a_{1}[/math] = 3, [math]a_{2}[/math] = 5, [math]a_{3}[/math] = 7, [math]a_{4}[/math] = 10, S = {1, 4, 6, 8, 9, 13, 14}.

Мы разделим числа на 2 сегмента. Для [math]a_{1}[/math] получим верхний сегмент 0, нижний 3; [math]a_{2}[/math] верхний 1, нижний 1; [math]a_{3}[/math] верхний 1, нижний 3; [math]a_{4}[/math] верхний 2, нижний 2. Для элементов из S получим: для 1: нижний 1 т.к. он выделяется из нижнего сегмента [math]a_{1}[/math]; для 4 нижний 0; для 8 нижний 0; для 9 нижний 1; для 13 верхний 3; для 14 верхний 3. Теперь все верхние сегменты, нижние сегменты 1 и 3, нижние сегменты 4, 5, 6, 7, нижние сегменты 8, 9, 10 формируют 4 новые задачи на разделение.

Сортировка на маленьких целых

Для лучшего понимания действия алгоритма и материала, изложенного в данной статье, в целом, ниже представлены несколько полезных лемм. Шаблон:Лемма2 Шаблон:Лемма3 Шаблон:Лемма4