Быстрая сортировка — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оптимизация глубины рекурсии до O(logn) в худшем случае)
(Псевдокод)
Строка 10: Строка 10:
 
  Quicksort(A, l, r)
 
  Quicksort(A, l, r)
 
   if l < r then  
 
   if l < r then  
      q = Partition(A, l, r)
+
    q = Partition(A, l, r)
      Quicksort(A, l, q)
+
    Quicksort(A, l, q - 1)
      Quicksort(A, q, r)
+
    Quicksort(A, q + 1, r)
 
</wikitex>
 
</wikitex>
 
Для сортировки всего массива необходимо выполнить процедуру <tex>Quicksort(A, 0, length[A] - 1)</tex>.
 
Для сортировки всего массива необходимо выполнить процедуру <tex>Quicksort(A, 0, length[A] - 1)</tex>.
Строка 24: Строка 24:
 
   j = r
 
   j = r
 
   while true do
 
   while true do
      while a[i] > x do
+
    while a[i] > x do
          i = i + 1
+
      i = i + 1
      while A[j] < x do
+
    while A[j] < x do
          j = j - 1
+
      j = j - 1
      if i < j then поменять A[i] и A[j]
+
    if i < j then поменять A[i] и A[j]
          else return j
+
      else return j
 
</wikitex>
 
</wikitex>
  

Версия 01:12, 12 июня 2012

Быстрая сортировка (qsort, сортировка Хоара) — один из самых известных и широко используемых алгоритмов сортировки. Среднее время работы [math]O(n\log{n})[/math], что является асимптотически оптимальным временем работы для алгоритма, основанного на сравнении. Хотя время работы алгоритма для массива из [math]n[/math] элементов в худшем случае может составить [math]\Theta(n^2)[/math], на практике этот алгоритм является одним из самых быстрых.

Алгоритм

  • из массива выбирается некоторый опорный элемент [math]a[i][/math].
  • запускается процедура разделения массива, которая перемещает все ключи, меньшие, либо равные [math]a[i][/math], влево от него, а все ключи, большие, либо равные [math]a[i][/math] — вправо.
  • для обоих подмассивов: если в подмассиве более двух элементов, рекурсивно запускаем для него ту же процедуру..

Псевдокод

<wikitex>

Quicksort(A, l, r)
  if l < r then 
    q = Partition(A, l, r)
    Quicksort(A, l, q - 1)
    Quicksort(A, q + 1, r)

</wikitex> Для сортировки всего массива необходимо выполнить процедуру [math]Quicksort(A, 0, length[A] - 1)[/math].

Разбиение массива

Основной шаг алгоритма сортировки — процедура [math]Partition[/math], которая переставляет элементы массива [math]A[p..r][/math] нужным образом: <wikitex>

Partition(A, l, r)
  x = A[l]
  i = l
  j = r
  while true do
    while a[i] > x do
      i = i + 1
    while A[j] < x do
      j = j - 1
    if i < j then поменять A[i] и A[j]
      else return j

</wikitex>

Асимптотика

Худшее время работы

Предположим, что мы разбиваем массив так, что одна часть содержит [math]n - 1[/math] элементов, а вторая — [math]1[/math]. Поскольку процедура разбиения занимает время [math]\Theta(n)[/math], для времени работы [math]T(n)[/math] получаем соотношение:


[math]T(n) = T(n - 1) + \Theta(n) = \sum\limits_{k=1}^{n} \Theta(k) = \Theta(\sum\limits_{k=1}^{n} k) = \Theta(n^2)[/math].

Мы видим, что при максимально несбалансированном разбиении время работы составляет [math]\Theta(n^2)[/math]. В частности, это происходит, если массив изначально отсортирован.

Среднее время работы

Лемма:
Время работы алгоритма быстрой сортировки равно [math]O(n \log n)[/math].
Доказательство:
[math]\triangleright[/math]

Пусть Х — полное количество сравнений элементов с опорным за время работы сортировки. Нам необходимо вычислить полное количество сравнений. Переименуем элементы массива как [math]z_1...z_n[/math], где [math]z_i[/math] наименьший по порядку элемент. Также введем множество [math]Z_{ij} = \{z_i, z_{i+1}...z_j\}[/math].

Заметим, что сравнеие каждой пары элементов происходит не больше одного раза, так как элемент сравнивается с опорным, а опорный элемент после разбиения больше не будет участвовать в сравнении.

Поскольку каждая пара элементов срановается не более одного раза, полное количество сравнений выражается как

[math]X = \sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n} X_{ij}[/math], где [math]X_{ij} = 1[/math] если произошло сравнение [math]z_i[/math] и [math]z_j[/math] и [math]X_{ij} = 0[/math], если сравнения не произошло.

Применим к обоим частям равенства операцию вычисления матожидания и воспользовавшись ее линейностью получим

[math]E[X] = E\left[\sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n} X_{ij}\right] = \sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n} E[X_{ij}] = \sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n} Pr\{z_i[/math] сравнивается с [math]z_j\}[/math]

Осталось вычислить величину [math]Pr\{z_i[/math] сравнивается с [math]z_j\}[/math] — вероятность того, что [math]z_i[/math] сравнивается с [math]z_j[/math]. Поскольку предполагается, что все элементы в массиве различны, то при выборе [math]x[/math] в качестве опорного элемента впоследствии не будут сравниваться никакие [math]z_i[/math] и [math]z_j[/math] для которых [math]z_i \lt x \lt z_j[/math]. С другой стороны, если [math]z_i[/math] выбран в качестве опорного, то он будет сравниваться с каждым элементом [math]Z_{ij}[/math] кроме себя самого. Таким образом элементы [math]z_i[/math] и [math]z_j[/math] сравниваются тогда и только тогда когда первым в множестве [math]Z_{ij}[/math] опорным элементом был выбран один из них.

[math]Pr\{z_i[/math] сравнивается с [math]z_j\} = Pr\{[/math]первым опорным элементом был [math]z_i[/math] или [math]z_j\} = Pr\{[/math]первым опорным элементом был [math]z_i\} + Pr\{[/math]первым опорным элементом был [math]z_j\} = \frac {1}{j-i+1} + \frac {1}{j-i+1} = \frac {2}{j-i+1} [/math]

[math] E[X] = \sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^{n} \frac {2}{j-i+1} = \sum\limits_{i=1}^{n-1}\sum\limits_{k=1}^{n-i} \frac 2{k+1} \lt \sum\limits_{i=1}^{n-1}\sum\limits_{k=1}^{n-i} \frac 2{k} = \sum\limits_{i=1}^{n-1}O(\log n) = O(n \log n)[/math]
[math]\triangleleft[/math]

Mатожидание времени работы быстрой сортировки будет [math]O(n \log n)[/math].

Улучшения

В случае повторяющихся неудачных разбиений опорным элементом, глубина рекурсии может достичь [math]O(n)[/math], а время работы алгоритма [math]O(n^2)[/math]. Существуют различные способы разбиения массива, направленные против худшего случая:

  • При выборе опорного элемента из данного диапазона случайным образом худший случай становится очень маловероятным и ожидаемое время выполнения алгоритма сортировки — [math]O(n \log n)[/math].
  • Выбирать опорным элементом средний из трех (первого, среднего и последнего элементов).
  • Разбивать массив не на две, а на три части.

Оптимизация глубины рекурсии до O(logn) в худшем случае

Во избежание достижения опасной глубины рекурсии в худшем случае (или при приближении к нему) возможна модификация алгоритма, устраняющая одну ветвь рекурсии: вместо того, чтобы после разделения массива вызывать рекурсивно процедуру разделения для обоих найденных подмассивов, рекурсивный вызов делается только для меньшего подмассива, а больший обрабатывается в цикле в пределах этого же вызова процедуры. С точки зрения эффективности в среднем случае разницы практически нет: накладные расходы на дополнительный рекурсивный вызов и на организацию сравнения длин подмассивов и цикла — примерно одного порядка. Зато глубина рекурсии ни при каких обстоятельствах не превысит [math]\log n[/math], а в худшем случае вырожденного разделения она вообще будет не более 2 — вся обработка пройдёт в цикле первого уровня рекурсии.

Ссылки

Литература

  • Т. Кормен, Ч. Лейзерсон, Р. Ривест: Алгоритмы: построение и анализ глава 7