Семейство универсальных попарно независимых хеш-функций — различия между версиями
(→Доказательство) |
(→Доказательство) |
||
Строка 8: | Строка 8: | ||
Рассмотрим функцию <tex> h_{a, b} = ((ax+b)\ mod\ p)\ mod\ 2^n</tex> для простого <tex>p \in (2^n; 2^{n+1}]</tex>, любых <tex>a, b \in \mathbb{Z}_p</tex>, <tex>a \ne 0</tex> | Рассмотрим функцию <tex> h_{a, b} = ((ax+b)\ mod\ p)\ mod\ 2^n</tex> для простого <tex>p \in (2^n; 2^{n+1}]</tex>, любых <tex>a, b \in \mathbb{Z}_p</tex>, <tex>a \ne 0</tex> | ||
− | Для <tex>r=(ax_1+b)\ mod\ p</tex> и <tex>s=(ax_2+b)\ mod\ p</tex> | + | Для <tex>r=(ax_1+b)\ mod\ p</tex> и <tex>s=(ax_2+b)\ mod\ p</tex> |
<tex> P(r = r_1 \land s = s_1)= \frac{1}{p^2}</tex>, где <tex>r_1, s_1 \in [0; p)</tex>. | <tex> P(r = r_1 \land s = s_1)= \frac{1}{p^2}</tex>, где <tex>r_1, s_1 \in [0; p)</tex>. |
Версия 08:41, 3 июля 2010
Определение
называется семейством универсальных попарно независимых хеш-функций, если для и и равномерной выборки функции будет выполнено
Лемма
Для любого
существуетДоказательство
Рассмотрим функцию
для простого , любых ,Для
и, где .
Раз
, то можно записать следующую оценку:
Теорема
Для любых
существуетДоказательство
Построим
следующим образом:При
существование следует из леммы.При
получим переменную обрезав первые бит переменной . Тогда для переменной существует , а для - соответственно .При
Сперва получим . можно получить отбросив у значений хеш-функций из первые бит.