Эволюционные алгоритмы поиска эйлерова цикла в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Предыдущие результаты)
(Улучшенный jump-оператор)
Строка 10: Строка 10:
 
Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) .  Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex>
 
Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) .  Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex>
 
====Улучшенный jump-оператор====
 
====Улучшенный jump-оператор====
Лучших результатов можно достичь, если использовать
+
Лучших результатов можно достичь, если использовать только операции вида <tex>jump(i, 1)</tex>. Тогда время работы будет <tex>O(m^5)</tex>.
  
 
=== Алгоритм ===
 
=== Алгоритм ===

Версия 20:10, 17 июня 2012

Постановка задачи

Определение:
Эйлеров цикл в графе — это путь, проходящий по всем рёбрам графа ровно по одному разу. Задача — для заданного графа найти такой путь.


Предыдущие результаты

Перестановка ребер

Пусть для графа [math]G[/math] задан набор всех его ребер [math](e_1, e_2, \dots e_m)[/math]. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное время.

Jump-оператор

Jump-оператор работает следующим образом. Для набора ребер [math](e_1, e_2, \dots e_m)[/math] оператор [math]jump(i,j)[/math] передвигает [math]i[/math]-й элемент на позицию [math]j[/math] и циклически сдвигает ребра между позициями [math]i[/math] и [math]j[/math] влево (если [math]i \gt j[/math] то вправо) . Таким образом набор [math](e_1, e_2, \dots e_m)[/math] превратиться в [math](e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)[/math]. Работает за [math]O(m^5)[/math]

Улучшенный jump-оператор

Лучших результатов можно достичь, если использовать только операции вида [math]jump(i, 1)[/math]. Тогда время работы будет [math]O(m^5)[/math].

Алгоритм

Представление графа

Фитнес функция

Операция мутации

Выбор вершин для мутации