Эволюционные алгоритмы поиска эйлерова цикла в графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Улучшенный jump-оператор)
Строка 6: Строка 6:
 
=== Предыдущие результаты ===
 
=== Предыдущие результаты ===
 
====Перестановка ребер ====
 
====Перестановка ребер ====
Пусть для графа <tex>G</tex> задан набор всех его ребер <tex>(e_1, e_2, \dots e_m)</tex>. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное время.
+
Пусть для графа <tex>G</tex> задан набор всех его ребер <tex>(e_1, e_2, \dots e_m)</tex>. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное от количества ребер время.
 
====Jump-оператор====
 
====Jump-оператор====
Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) .  Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex>
+
Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) .  Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex>, где <tex>m</tex> — количество ребер в графе.
 
====Улучшенный jump-оператор====
 
====Улучшенный jump-оператор====
 
Лучших результатов можно достичь, если использовать только операции вида <tex>jump(i, 1)</tex>. Тогда время работы будет <tex>O(m^5)</tex>.
 
Лучших результатов можно достичь, если использовать только операции вида <tex>jump(i, 1)</tex>. Тогда время работы будет <tex>O(m^5)</tex>.
 
 
=== Алгоритм ===
 
=== Алгоритм ===
 
==== Представление графа ====
 
==== Представление графа ====
Строка 17: Строка 16:
 
==== Операция мутации ====
 
==== Операция мутации ====
 
==== Выбор вершин для мутации ====
 
==== Выбор вершин для мутации ====
 +
===Литература===
 +
* [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/p1203-doerr.pdf  Doerr B., Johannsen D. Adjacency List Matchings - An Ideal Genotype for Cycle Covers]

Версия 20:12, 17 июня 2012

Постановка задачи

Определение:
Эйлеров цикл в графе — это путь, проходящий по всем рёбрам графа ровно по одному разу. Задача — для заданного графа найти такой путь.


Предыдущие результаты

Перестановка ребер

Пусть для графа [math]G[/math] задан набор всех его ребер [math](e_1, e_2, \dots e_m)[/math]. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное от количества ребер время.

Jump-оператор

Jump-оператор работает следующим образом. Для набора ребер [math](e_1, e_2, \dots e_m)[/math] оператор [math]jump(i,j)[/math] передвигает [math]i[/math]-й элемент на позицию [math]j[/math] и циклически сдвигает ребра между позициями [math]i[/math] и [math]j[/math] влево (если [math]i \gt j[/math] то вправо) . Таким образом набор [math](e_1, e_2, \dots e_m)[/math] превратиться в [math](e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)[/math]. Работает за [math]O(m^5)[/math], где [math]m[/math] — количество ребер в графе.

Улучшенный jump-оператор

Лучших результатов можно достичь, если использовать только операции вида [math]jump(i, 1)[/math]. Тогда время работы будет [math]O(m^5)[/math].

Алгоритм

Представление графа

Фитнес функция

Операция мутации

Выбор вершин для мутации

Литература