Задача многокритериальной оптимизации. Multiobjectivization — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}} == Определение == '''Мультикритериальная оптимизация''' - это процесс одновр...»)
 
Строка 10: Строка 10:
 
: <math>\vec x \in S</math>
 
: <math>\vec x \in S</math>
 
где <math>f_i: R^n \to R</math> это <math>k</math> (<math>k\ge 2</math>) ''целевых функций''. Векторы решений <math>\vec x = (x_1, x_2, \dots, x_n)^T</math> Относятся к области определения <math>S</math>.
 
где <math>f_i: R^n \to R</math> это <math>k</math> (<math>k\ge 2</math>) ''целевых функций''. Векторы решений <math>\vec x = (x_1, x_2, \dots, x_n)^T</math> Относятся к области определения <math>S</math>.
 +
 +
Задача многокритериальной оптимизации состоит в поиске вектора целевых переменных, удовлетворяющего наложенным ограничениям и оптимизирующего векторную функцию, элементы которой соответствуют целевым функциям.
 +
 +
== Критерий оптимальности ==
 +
Перечислим основные критерии оптимальности
 +
=== Критерий Парето ===
 +
Вектор решения <math>\vec x\in S</math> - оптимальный по Парето, если  <math>\not\exists\vec x'\in S</math>:<math>f_i(\vec x) \le f_i(\vec x')</math> для всех <math>i=1, \dots, k</math> и <math>f_i(\vec x) < f_i(\vec x')</math> для хотя бы одного <math>i</math>.
 +
 +
<math>P(S)</math> - множество оптимальных по Парето решений.
 +
 +
Целевой вектор является оптимальным по Парето, если соответствующий ему вектор из области определения также оптимален по Парето.
 +
 +
<math>P(Z)</math> - множество оптимальных по Парето целевых векторов.
 +
 +
Множество оптимальных по Парето векторов является подмножеством оптимальных по Парето в слабом смысле векторов. Вектор <math>\vec x'\in S</math> является слабым оптимумом по Парето тогда, когда не существует вектора <math>\vec x\in S</math> такого, что <math>f_i(\vec x) < f_i(\vec x')</math> для всех <math>i=1, 2, \dots, k</math>.
 +
 +
Множество оптимальных по Парето решений также называют Парето-фронтом.
 +
 +
Парето-фронт не может быть вычислен за полиномиальное время

Версия 00:27, 18 июня 2012

Эта статья находится в разработке!

Определение

Мультикритериальная оптимизация - это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.


Задача многокритериальной оптимизации

Задача многокритериальной оптимизации формулируется следующим образом:

[math]\min\limits_{\vec{x}}\{f_1(\vec{x}), f_2(\vec x), \dots, f_k(\vec x)\},[/math]
[math]\vec x \in S[/math]

где [math]f_i: R^n \to R[/math] это [math]k[/math] ([math]k\ge 2[/math]) целевых функций. Векторы решений [math]\vec x = (x_1, x_2, \dots, x_n)^T[/math] Относятся к области определения [math]S[/math].

Задача многокритериальной оптимизации состоит в поиске вектора целевых переменных, удовлетворяющего наложенным ограничениям и оптимизирующего векторную функцию, элементы которой соответствуют целевым функциям.

Критерий оптимальности

Перечислим основные критерии оптимальности

Критерий Парето

Вектор решения [math]\vec x\in S[/math] - оптимальный по Парето, если [math]\not\exists\vec x'\in S[/math]:[math]f_i(\vec x) \le f_i(\vec x')[/math] для всех [math]i=1, \dots, k[/math] и [math]f_i(\vec x) \lt f_i(\vec x')[/math] для хотя бы одного [math]i[/math].

[math]P(S)[/math] - множество оптимальных по Парето решений.

Целевой вектор является оптимальным по Парето, если соответствующий ему вектор из области определения также оптимален по Парето.

[math]P(Z)[/math] - множество оптимальных по Парето целевых векторов.

Множество оптимальных по Парето векторов является подмножеством оптимальных по Парето в слабом смысле векторов. Вектор [math]\vec x'\in S[/math] является слабым оптимумом по Парето тогда, когда не существует вектора [math]\vec x\in S[/math] такого, что [math]f_i(\vec x) \lt f_i(\vec x')[/math] для всех [math]i=1, 2, \dots, k[/math].

Множество оптимальных по Парето решений также называют Парето-фронтом.

Парето-фронт не может быть вычислен за полиномиальное время