Схема Бернулли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 51: Строка 51:
 
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
 
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
  
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По последней теореме, <tex> P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \cdot (\genfrac{}{}{}{0}{5}{6})^{k - 1} </tex>
+
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По последней теореме, <tex> P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \times (\genfrac{}{}{}{0}{5}{6})^{k - 1} </tex>
 
События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
 
События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
 
<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>
 
<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>
 
Вероятности этих объединений равны суммам вероятностей слагаемых:
 
Вероятности этих объединений равны суммам вероятностей слагаемых:
  
<tex> P(A) = \genfrac{}{}{}{0}{1}{6} +\genfrac{}{}{}{0}{1}{6}\times {(\genfrac{}{}{}{0}{5}{6})^{2}} + \genfrac{}{}{}{0}{1}{6}\times {(\genfrac{}{}{}{0}{5}{6})^{4}} = \genfrac{}{}{}{0}{6}{11}
+
<tex> P(A) = \genfrac{}{}{}{0}{1}{6} +\genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{2}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{4}} = \genfrac{}{}{}{0}{6}{11}
  
P(B) = \genfrac{}{}{}{0}{1}{6}\times {\genfrac{}{}{}{0}{5}{6}} + \genfrac{}{}{}{0}{1}{6}\times {(\genfrac{}{}{}{0}{5}{6})^{3}} + \genfrac{}{}{}{0}{1}{6}\times {(\genfrac{}{}{}{0}{5}{6})^{5}} = \genfrac{}{}{}{0}{5}{11}</tex>
+
P(B) = \genfrac{}{}{}{0}{1}{6} {\genfrac{}{}{}{0}{5}{6}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{3}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{5}} = \genfrac{}{}{}{0}{5}{11}</tex>
  
 
.
 
.
 
.
 
.

Версия 15:04, 19 декабря 2012

Распределение Бернулли в теории вероятностей и математической статистике — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in \mathbb (0, 1)[/math] , а неудача — с вероятностью q = 1 − p.


Теорема:
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P([math]v_{n} [/math] = k) = [math]\binom{n}{k}[/math] [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
Доказательство:
[math]\triangleright[/math]
Событие A = {[math] v_{n} [/math] = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить k успехов на n местах. Поэтому событие A состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
[math]\triangleleft[/math]

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

P([math]v_{10}[/math] = 4) = [math]\binom{10}{4}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {4} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

P([math]v_{10}[/math] = 5) = [math]\binom{10}{5}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {5} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 5}[/math] [math]~\approx ~ 0{.}246 [/math]

P([math]v_{10}[/math] = 6) = [math]\binom{10}{6}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {6} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 6} [/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: P(4)([math] \le [/math][math] v_{10}[/math] [math] \le [/math]6) = P([math] v_{10} [/math] = 4) + P([math] v_{10} [/math] = 5) + P([math] v_{10} [/math] = 6) [math] ~\approx ~ 0{.}656 [/math]

Теорема:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .}, равна P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k [/math] − 1 испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]

Набор вероятностей [math] pq^ {k - 1} [/math], где k принимает любые значения из множества натуральных чисел, называется геометрическим распределением вероятностей. Геометрическое распределение вероятностей обладает интересным свойством отсутствия последействия, означающим «нестарение» устройства, время жизни которого подчинено геометрическому распределению.

Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых n и k имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)} [/math] (9)

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9), получим [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{q^{n + k}} {q^{n}} = q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По последней теореме, [math] P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \times (\genfrac{}{}{}{0}{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) = \genfrac{}{}{}{0}{1}{6} +\genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{2}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{4}} = \genfrac{}{}{}{0}{6}{11} P(B) = \genfrac{}{}{}{0}{1}{6} {\genfrac{}{}{}{0}{5}{6}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{3}} + \genfrac{}{}{}{0}{1}{6} {(\genfrac{}{}{}{0}{5}{6})^{5}} = \genfrac{}{}{}{0}{5}{11}[/math]

. .