Схема Бернулли — различия между версиями
Sergej (обсуждение | вклад) |
Sergej (обсуждение | вклад) |
||
Строка 76: | Строка 76: | ||
Для любого <tex>n</tex> и любых неотрицательных целых чисел | Для любого <tex>n</tex> и любых неотрицательных целых чисел | ||
<tex> n_{1}, . . . , n_{m}</tex>, сумма которых равна <tex>n</tex>, верна формула: | <tex> n_{1}, . . . , n_{m}</tex>, сумма которых равна <tex>n</tex>, верна формула: | ||
− | <tex> P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times | + | <tex> P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times p_{1}^n_{1}... p_{m}^n_{m} |
</tex> | </tex> | ||
}} | }} |
Версия 15:52, 19 декабря 2012
Распределение Бернулли в теории вероятностей и математической статистике — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.
Содержание
Определение
Определение: |
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью | , а неудача — с вероятностью q = 1 − p.
Теорема: |
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P( = k) = |
Доказательство: |
Событие A = { | = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно cпособов расположить k успехов на n местах. Поэтому событие A состоит из элементарных исходов, вероятность каждого из которых равна
Пример
Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.
Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.
P(
= 4) =P(
= 5) =P(
= 6) =Сложим вероятности несовместных событий: P(4)(
6) = P( = 4) + P( = 5) + P( = 6)Теорема: |
Вероятность того, что первый успех произойдёт в испытании с номером |
Доказательство: |
Вероятность первым | − 1 испытаниям завершиться неудачей, а последнему — успехом, равна
Набор вероятностей
, где k принимает любые значения из множества натуральных чисел, называется геометрическим распределением вероятностей. Геометрическое распределение вероятностей обладает интересным свойством отсутствия последействия, означающим «нестарение» устройства, время жизни которого подчинено геометрическому распределению.Теорема: |
Пусть для любого . Тогда для любых неотрицательных целых n и k имеет место равенство: |
Доказательство: |
По определению условной вероятности, Последнее равенство верно в силу того, что событие (9) влечёт событие , поэтому их пересечением будет событие . Найдём для целого 0 вероятность : событие означает,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна . Возвращаясь к (9), получим . |
Пример
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие
состоит в том, что что шесть очков впервые выпадет в испытании с номером . По последней теореме, События , означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: Вероятности этих объединений равны суммам вероятностей слагаемых:Теперь аналогичным образом посчитаю вероятность для события В
Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.
Пример
Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны
исходов: и -й исход в одном испытании случается с вероятностью , где . Обозначим через вероятность того, что в независимых испытаниях первый исход случится раз, второй исход — раз, и так далее, наконец, -й исход — разТеорема: |
Для любого и любых неотрицательных целых чисел
, сумма которых равна , верна формула: |