Схема Бернулли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 78: Строка 78:
 
<tex> P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times (p_{1})^(n_{1})\times... \times(p_{m})^(n_{m})
 
<tex> P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times (p_{1})^(n_{1})\times... \times(p_{m})^(n_{m})
 
</tex>
 
</tex>
 +
==proof
 +
Рассмотрим один элементарный исход, благоприятствующий выпадению <tex>n_{1}</tex> единиц, <tex> n_{2}</tex> двоек, и так далее.
 +
Это результат n экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей <tex>p_{n_{1}}...p_{n_{m}}</tex>. Остальные благоприятные исходы отличаются лишь расположением чисел <tex>1, 2, . . . , m</tex> на <tex>n</tex> местах. Число таких исходов равно числу способов расположить на <tex>n</tex> местах <tex>n_{1}</tex> единиц, <tex>n_{2}</tex> двоек,и так далее Это число равно
 +
<tex>\binom{n}{n_{1}}\times \binom{n - n_{1}}{n_{2}} \times \binom{n - n_{1} - n_{2}}{n_{3}}...\times \binom{n - n_{1}...-n_{m - 1}}{n_{m}} =
 +
\frac {n!}{n_{1}! \times n_{2}! .. \times n_{m}!}
 +
</tex>
 +
 
}}
 
}}

Версия 16:04, 19 декабря 2012

Распределение Бернулли в теории вероятностей и математической статистике — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in \mathbb (0, 1)[/math] , а неудача — с вероятностью q = 1 − p.


Теорема:
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P([math]v_{n} [/math] = k) = [math]\binom{n}{k}[/math] [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
Доказательство:
[math]\triangleright[/math]
Событие A = {[math] v_{n} [/math] = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить k успехов на n местах. Поэтому событие A состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
[math]\triangleleft[/math]

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

P([math]v_{10}[/math] = 4) = [math]\binom{10}{4}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {4} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

P([math]v_{10}[/math] = 5) = [math]\binom{10}{5}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {5} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 5}[/math] [math]~\approx ~ 0{.}246 [/math]

P([math]v_{10}[/math] = 6) = [math]\binom{10}{6}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {6} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 6} [/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: P(4)([math] \le [/math][math] v_{10}[/math] [math] \le [/math]6) = P([math] v_{10} [/math] = 4) + P([math] v_{10} [/math] = 5) + P([math] v_{10} [/math] = 6) [math] ~\approx ~ 0{.}656 [/math]

Теорема:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .}, равна P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k [/math] − 1 испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]

Набор вероятностей [math] pq^ {k - 1} [/math], где k принимает любые значения из множества натуральных чисел, называется геометрическим распределением вероятностей. Геометрическое распределение вероятностей обладает интересным свойством отсутствия последействия, означающим «нестарение» устройства, время жизни которого подчинено геометрическому распределению.

Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых n и k имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)} [/math] (9)

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9), получим [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{q^{n + k}} {q^{n}} = q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По последней теореме, [math] P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \times (\genfrac{}{}{}{0}{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) = \genfrac{}{}{}{0}{1}{6} + \genfrac{}{}{}{0}{1}{6} \times(\genfrac{}{}{}{0}{5}{6})^{2} + \genfrac{}{}{}{0}{1}{6}\times (\genfrac{}{}{}{0}{5}{6})^{4} ... = \genfrac{}{}{}{0}{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события В

[math] P(B) = \genfrac{}{}{}{0}{1}{6} \times(\genfrac{}{}{}{0}{5}{6})+ \genfrac{}{}{}{0}{1}{6} \times(\genfrac{}{}{}{0}{5}{6})^{3} + \genfrac{}{}{}{0}{1}{6}\times (\genfrac{}{}{}{0}{5}{6})^{5} ... = \genfrac{}{}{}{0}{5}{11}. [/math]

Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.

Пример

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math]. Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math]n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз

Теорема:
Для любого [math]n[/math] и любых неотрицательных целых чисел

[math] n_{1}, . . . , n_{m}[/math], сумма которых равна [math]n[/math], верна формула: [math] P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times (p_{1})^(n_{1})\times... \times(p_{m})^(n_{m}) [/math] ==proof Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат n экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\binom{n}{n_{1}}\times \binom{n - n_{1}}{n_{2}} \times \binom{n - n_{1} - n_{2}}{n_{3}}...\times \binom{n - n_{1}...-n_{m - 1}}{n_{m}} = \frac {n!}{n_{1}! \times n_{2}! .. \times n_{m}!} [/math]