Схема Бернулли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
(Пример)
Строка 55: Строка 55:
 
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
 
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
  
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex> P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \times (\genfrac{}{}{}{0}{5}{6})^{k - 1} </tex>
+
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex> P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \cdot (\genfrac{}{}{}{0}{5}{6})^{k - 1} </tex>
 
События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
 
События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
 
<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>
 
<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>

Версия 19:20, 20 декабря 2012

Распределение Бернулли — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in \mathbb (0, 1)[/math] , а неудача — с вероятностью [math] q =1 - p [/math].

Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта (случайная) величина может принимать целые значения от 0 до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.

Теорема:
Для любого [math]k = 0, 1, . . . , n [/math] вероятность получить в [math]n [/math]испытаниях [math]k[/math] успехов равна [math]P(v_{n} = k [/math] ) = [math]\binom{n}{k}[/math] [math] p ^ {k} [/math] [math] q ^ {n - k}[/math] Набор вероятностей называется биномиальным распределением вероятностей.
Доказательство:
[math]\triangleright[/math]
Событие {[math]A = v_{n} [/math] = k} означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
[math]\triangleleft[/math]

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

[math]P(v_{10}[/math] = 4) = [math]\binom{10}{4}\cdot (\genfrac{}{}{}{0}{1}{2})^ {4} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

[math]P(v_{10}[/math] = 5) = [math]\binom{10}{5}\cdot (\genfrac{}{}{}{0}{1}{2})^ {5} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 5}[/math] [math]~\approx ~ 0{.}246 [/math]

[math]P(v_{10}[/math] = 6) = [math]\binom{10}{6}\cdot (\genfrac{}{}{}{0}{1}{2})^ {6} \cdot (\genfrac{}{}{}{0}{1}{2})^ {10 - 6} [/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: [math]P(4)( \le [/math][math] v_{10}[/math] [math] \le [/math]6) = [math]P( v_{10} [/math] = 4) + [math]P( v_{10} [/math] = 5) + [math]P( v_{10} [/math] = 6) [math] ~\approx ~ 0{.}656 [/math]

Лемма

Лемма:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .},[/math] равна [math]P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k [/math] − 1 испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]


Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)} [/math] (9)

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9), получим [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{q^{n + k}} {q^{n}} = q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) = \genfrac{}{}{}{0}{1}{6} \cdot (\genfrac{}{}{}{0}{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) = \genfrac{}{}{}{0}{1}{6} + \genfrac{}{}{}{0}{1}{6} \cdot(\genfrac{}{}{}{0}{5}{6})^{2} + \genfrac{}{}{}{0}{1}{6}\cdot (\genfrac{}{}{}{0}{5}{6})^{4} ... = \genfrac{}{}{}{0}{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события В

[math] P(B) = \genfrac{}{}{}{0}{1}{6} \cdot(\genfrac{}{}{}{0}{5}{6})+ \genfrac{}{}{}{0}{1}{6} \cdot(\genfrac{}{}{}{0}{5}{6})^{3} + \genfrac{}{}{}{0}{1}{6}\times (\genfrac{}{}{}{0}{5}{6})^{5} ... = \genfrac{}{}{}{0}{5}{11}. [/math]

Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.

Пример

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math]. Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math]n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз

Теорема:
Для любого [math]n[/math] и любых неотрицательных целых чисел

[math] n_{1}, . . . , n_{m}[/math], сумма которых равна [math]n[/math], верна формула:

[math] P(n_{1}, . . . , n_{m}) =( \frac{n!}{n_{1}! \times n_{2}! .. \times n_{m}!})\times (p_{1})^(n_{1})\times... \times(p_{m})^(n_{m}) [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\binom{n}{n_{1}}\times \binom{n - n_{1}}{n_{2}} \times \binom{n - n_{1} - n_{2}}{n_{3}}...\times \binom{n - n_{1}...-n_{m - 1}}{n_{m}} = \frac {n!}{n_{1}! \times n_{2}! .. \times n_{m}!} [/math]
[math]\triangleleft[/math]

Теперь мы можем вернуться к последнему примеру и выписать ответ: так как вероятности выпадения тройки и единицы равны по [math]\genfrac{}{}{}{0}{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\genfrac{}{}{}{0}{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна

[math] P(10, 3, 2) = \frac {15!}{10! \times 3! \times 2!} \times ((\genfrac{}{}{}{0}{1}{6})^(10)) \times ((\genfrac{}{}{}{0}{1}{6})^3)\times ((\genfrac{}{}{}{0}{4}{6})^2) [/math]

См. также

Литература

  • Н.И Чернова 'Теория вероятности' Учебное пособие СибГУТИ— Новосибирск, 2009.