Схема Бернулли — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
Строка 4: Строка 4:
 
{{Определение  
 
{{Определение  
 
|definition=
 
|definition=
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью  <tex> p \in \mathbb (0, 1)</tex> , а неудача с вероятностью <tex> q =1 - p </tex>.
+
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью  <tex> p \in (0, 1)</tex> , а неудача {{---}} с вероятностью <tex> q = 1 - p </tex>.
 
}}
 
}}
Случайная величина <tex>\xi</tex> с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью <tex>p</tex> успеха : ни одного успеха или один успех. Функция распределения <tex> \xi</tex> имеет вид
+
[[Дискретная случайная величина | Случайная величина]] <tex>\xi</tex> с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью <tex>p</tex> успеха : ни одного успеха или один успех. Функция распределения <tex> \xi</tex> имеет вид
 
[[Файл:Функция распределения.gif]]
 
[[Файл:Функция распределения.gif]]
  
 
[[Файл:Img660.gif‎]]
 
[[Файл:Img660.gif‎]]
  
Обозначим через <tex> v_{n} </tex> число успехов, случившихся в <tex> n</tex> испытаниях схемы Бернулли. Эта (случайная) величина может принимать целые значения от 0 до <tex>n</tex> в зависимости от результатов испытаний. Например, если все <tex>n </tex> испытаний завершились неудачей, то величина <tex> v_{n} </tex> равна нулю.
+
Обозначим через <tex> v_{n} </tex> число успехов, случившихся в <tex> n</tex> испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от <tex>0</tex> до <tex>n</tex> в зависимости от результатов испытаний. Например, если все <tex>n </tex> испытаний завершились неудачей, то величина <tex> v_{n} </tex> равна нулю.
  
 
{{Теорема
 
{{Теорема
 
|id=th1
 
|id=th1
 
|statement=
 
|statement=
Для любого <tex >k = 0, 1, . . . , n </tex> вероятность получить в <tex>n</tex> испытаниях <tex>k</tex> успехов равна <tex>P(v_{n} = k </tex> ) = <tex>C^k_n</tex>   <tex> p ^ {k}  q ^ {n - k}</tex>
+
Для любого <tex >k = 0, 1, . . . , n </tex> вероятность получить в <tex>n</tex> испытаниях <tex>k</tex> успехов равна <tex> P(v_{n} = k ) = </tex> <tex dpi="145"> \binom{n}{k} </tex><tex> p^{k}  q^{n - k}</tex>
  
 
|proof=
 
|proof=
Событие {<tex>A = v_{n} </tex> = k} означает, что в <tex>n</tex> испытаниях схемы Бернулли произошло ровно <tex>k</tex> успехов. Рассмотрим один элементарный исход из события <tex>A</tex>: когда первые <tex>k</tex> испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна <tex> p ^ {k} </tex> <tex> (1-p) ^ {n - k} </tex> Другие элементарные исходы из события <tex>A</tex> отличаются лишь расположением <tex>k</tex> успехов на <tex>n</tex> местах. Есть ровно <tex>C^k_n</tex> cпособов расположить <tex>k</tex> успехов на <tex>n</tex> местах. Поэтому событие <tex>A</tex> состоит из <tex>C^k_n</tex> элементарных исходов, вероятность каждого из которых равна  <tex> p ^ {k} </tex> <tex> q ^ {n - k}</tex>
+
Событие <tex>\{A = v_{n} = k\}</tex> означает, что в <tex>n</tex> испытаниях схемы Бернулли произошло ровно <tex>k</tex> успехов. Рассмотрим один элементарный исход из события <tex>A</tex>: когда первые <tex>k</tex> испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна <tex> p ^ {k} </tex> <tex> (1-p) ^ {n - k} </tex> Другие элементарные исходы из события <tex>A</tex> отличаются лишь расположением <tex>k</tex> успехов на <tex>n</tex> местах. Есть ровно <tex dpi="145">\binom{n}{k}</tex> cпособов расположить <tex>k</tex> успехов на <tex>n</tex> местах. Поэтому событие <tex>A</tex> состоит из <tex dpi="145">\binom{n}{k}</tex> элементарных исходов, вероятность каждого из которых равна  <tex> p ^ {k} </tex> <tex> q ^ {n - k}</tex>
(Набор вероятностей в  теореме называется биномиальным распределением вероятностей.)
+
Набор вероятностей в  теореме называется биномиальным распределением вероятностей.
 
}}
 
}}
  
 
== Биномиальное распределение ==
 
== Биномиальное распределение ==
Говорят, что случайная величина <tex>\xi</tex> имеет '''биномиальное распределение''' с параметрами <tex>n \in \mathbb N</tex>  и <tex> p \in \mathbb(0, 1)</tex> и пишут: <tex> \xi \in \mathbb B_{n, p}</tex> если <tex> \xi</tex> принимает значения <tex>k = 0, 1 .. n</tex> с вероятностями <tex dpi = "160">P(\xi = k) = \binom{n}{k}  p^k (1 - p)^{n - k} </tex> . Случайная величина с таким распределением имеет смысл числа успехов в <tex> n </tex> испытаниях схемы Бернулли с вероятностью успеха <tex>p</tex>.  
+
Говорят, что случайная величина <tex>\xi</tex> имеет '''биномиальное распределение''' с параметрами <tex>n \in \mathbb N</tex>  и <tex> p \in (0, 1)</tex> и пишут: <tex> \xi \in \mathbb B_{n, p}</tex> если <tex> \xi</tex> принимает значения <tex>k = 0, 1, ... ,n</tex> с вероятностями <tex dpi = "160">P(\xi = k) = \binom{n}{k}  p^k (1 - p)^{n - k} </tex> . Случайная величина с таким распределением имеет смысл числа успехов в <tex> n </tex> испытаниях схемы Бернулли с вероятностью успеха <tex>p</tex>.  
 
Таблица распределения <tex> \xi </tex> имеет вид
 
Таблица распределения <tex> \xi </tex> имеет вид
  
Строка 41: Строка 41:
  
 
Сложим вероятности несовместных событий:
 
Сложим вероятности несовместных событий:
<tex>P(4)( \le </tex><tex> v_{10}</tex> <tex> \le </tex>6) = <tex>P( v_{10} </tex> = 4) + <tex>P( v_{10} </tex> = 5) + <tex>P( v_{10} </tex> = 6) <tex> ~\approx ~ 0{.}656 </tex>
+
<tex>P(4 \le v_{10} \le 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 </tex>
  
 
== Лемма ==
 
== Лемма ==

Версия 21:09, 22 декабря 2012

Распределение Бернулли — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех", например, при бросании монеты, или при моделировании удачной или неудачной хирургической операции.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in (0, 1)[/math] , а неудача — с вероятностью [math] q = 1 - p [/math].

Случайная величина [math]\xi[/math] с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью [math]p[/math] успеха : ни одного успеха или один успех. Функция распределения [math] \xi[/math] имеет вид Функция распределения.gif

Img660.gif

Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от [math]0[/math] до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.

Теорема:
Для любого [math]k = 0, 1, . . . , n [/math] вероятность получить в [math]n[/math] испытаниях [math]k[/math] успехов равна [math] P(v_{n} = k ) = [/math] [math] \binom{n}{k} [/math][math] p^{k} q^{n - k}[/math]
Доказательство:
[math]\triangleright[/math]

Событие [math]\{A = v_{n} = k\}[/math] означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]

Набор вероятностей в теореме называется биномиальным распределением вероятностей.
[math]\triangleleft[/math]

Биномиальное распределение

Говорят, что случайная величина [math]\xi[/math] имеет биномиальное распределение с параметрами [math]n \in \mathbb N[/math] и [math] p \in (0, 1)[/math] и пишут: [math] \xi \in \mathbb B_{n, p}[/math] если [math] \xi[/math] принимает значения [math]k = 0, 1, ... ,n[/math] с вероятностями [math]P(\xi = k) = \binom{n}{k} p^k (1 - p)^{n - k} [/math] . Случайная величина с таким распределением имеет смысл числа успехов в [math] n [/math] испытаниях схемы Бернулли с вероятностью успеха [math]p[/math]. Таблица распределения [math] \xi [/math] имеет вид

Img664.gif

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

[math]P(v_{10} = 4) = \binom{10}{4}\cdot \left(\frac{1}{2}\right)^ {4} \cdot \left(\frac{1}{2}\right)^ {10 - 4} ~\approx ~ 0{.}205 [/math]

[math]P(v_{10} = 5) =\binom{10}{5}\cdot \left(\frac{1}{2}\right)^ {5} \cdot \left(\frac{1}{2}\right)^ {10 - 5}~\approx ~ 0{.}246 [/math]

[math]P(v_{10} = 6) = \binom{10}{6}\cdot \left(\frac{1}{2}\right)^ {6} \cdot \left(\frac{1}{2}\right)^ {10 - 6} ~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: [math]P(4 \le v_{10} \le 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 [/math]

Лемма

Лемма:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .},[/math] равна [math]P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k - 1 [/math] испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]


Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \frac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \frac{P(r \gt n + k)}{P(r \gt n)} [/math] (9)

Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые [math]m[/math] испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9),что эта случайная величина равна [math] P(r \gt n + k | r \gt n) = \frac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \frac{q^{n + k}} {q^{n}} = q^{k} = P(r \gt k)[/math].
[math]\triangleleft[/math]

Пример

Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.

Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) = \frac{1}{6} \cdot (\frac{5}{6})^{k - 1} [/math] События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий: [math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math] Вероятности этих объединений равны суммам вероятностей слагаемых:

[math] P(A) = \frac{1}{6} + \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{2} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{4} ... = \frac{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события В

[math]P(B) = \frac{1}{6} \cdot\frac{5}{6}+ \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{3} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{5} ... = \frac{5}{11}. [/math]

Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.

Пример

Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы. Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани. Поэтому воспользоваться формулой для числа успехов в схеме Бернулли не удаcтся. Попробуем вывести подходящую формулу. Пусть в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math]. Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math]n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз

Теорема:
Для любого [math]n[/math] и любых неотрицательных целых чисел

[math] n_{1}, . . . , n_{m}[/math], сумма которых равна [math]n[/math], верна формула:

[math] P(n_{1}, . . . , n_{m}) = \frac{n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}\cdot {p_{1}}^{n_{1}}\cdot... \cdot {p_{m}}^{n_{m}} [/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее. Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно

[math]\binom{n}{n_1}\cdot\binom{n - n_1 - n_2}{n_2} \cdot\binom{n - n_1 - n_2- n_3}{n_3} ...\cdot \binom{n - n_1 - n_2.. - n_{m -1}}{n_m} = \frac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!} [/math]
[math]\triangleleft[/math]

Теперь мы можем вернуться к последнему примеру и выписать ответ: так как вероятности выпадения тройки и единицы равны по [math]\genfrac{}{}{}{0}{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\genfrac{}{}{}{0}{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна

[math] P(10, 3, 2) = {15!\over 10! \cdot 3! \cdot 2!} \cdot \left(\frac{1}{6}\right)^{10} \cdot \left({1\over 6}\right)^3\cdot\left({4\over6}\right)^2 [/math]

См. также

Литература

  • Н.И Чернова 'Теория вероятности' Учебное пособие СибГУТИ— Новосибирск, 2009.