Нормированные пространства (3 курс) — различия между версиями
Sementry (обсуждение | вклад) м (уф) |
|||
| Строка 87: | Строка 87: | ||
}} | }} | ||
| − | + | {{Определение | |
| + | |definition=Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно '''подпространством''' называется именно ''замкнутое'' подпространство, а ''алгебраические'' подпространства называют '''линейными подмножествами'''. | ||
| + | }} | ||
{{Теорема | {{Теорема | ||
| Строка 104: | Строка 106: | ||
Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | ||
| − | По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^(p) \to \alpha_k^*</tex>. | + | По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} \to \alpha_k^*</tex>. |
Так как <tex>\|y_m - y^*\| \to 0</tex> и <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k \in Y</tex>, то <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | Так как <tex>\|y_m - y^*\| \to 0</tex> и <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k \in Y</tex>, то <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | ||
| − | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами | + | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]] любую непрерывную на отрезке функцию можно приблизить полиномами. |
== Ссылки == | == Ссылки == | ||
Версия 23:15, 5 января 2013
| Определение: |
Линейное (векторное) пространство над полем — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
|
| Определение: |
Функция называется нормой в пространстве , если для нее выполняется:
|
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
| Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
|
Пусть . Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью ,. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
| Определение: |
| Нормированное пространство называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности. |
| Определение: |
| Нормы , эквивалентны, если существуют константы такие, что . Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть выполняется рефлексивность, симметриченость и транзитивность). |
Это определение равносильно тому, что сходимость последовательностей в них равносильна: . Несложно показать, что из взаимной ограниченности норм следует равносходимость. В обратную сторону: ???.
| Определение: |
| Пространство конечномерно, если . |
| Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
| Доказательство: |
|
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме. Выберем и зафиксируем в пространстве произвольный базис . 1. , (по неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. Таким образом, получили . 2. Теперь надо доказать, что Рассмотрим единичный шар по норме : , является компактом в (TODO: почему? может, тут есть подсказка). Рассмотрим на нем функцию , . Покажем, что она непрерывна: , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как непрерывна на , то по теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . Теперь рассмотрим произвольный ненулевой , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . Таким образом, получили обе части двойного неравенства. |
| Определение: |
| Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
| Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
| Доказательство: |
|
Пусть для произвольного , --- исходная норма. , пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость. Возьмем еще одну последовательность , . Вследствие покоординатной сходимости, . По полноте вещественной оси, все последовательностей сходятся: . Так как и , то и . |
Пример: , — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по теореме Вейерштрасса любую непрерывную на отрезке функцию можно приблизить полиномами.