|
|
Строка 35: |
Строка 35: |
| {{Определение | | {{Определение |
| |definition= | | |definition= |
− | <tex>r_\sigma(A) = \inf\limits_{n \in \mathbb N} \sqrt[n]{\|A\|^n}</tex> {{---}} спектральный радиус оператора. | + | <tex>r_\sigma(A) = \inf\limits_{n \in \mathbb N} \sqrt[n]{\|A^n\|}</tex> {{---}} спектральный радиус оператора. |
| }} | | }} |
| | | |
Строка 42: |
Строка 42: |
| {{Утверждение | | {{Утверждение |
| |statement= | | |statement= |
− | <tex>r_\sigma(A) = \lim\limits_{n \to \infty} \sqrt[n]{\|A\|^n}</tex> | + | <tex>r_\sigma(A) = \lim\limits_{n \to \infty} \sqrt[n]{\|A^n\|}</tex> |
| |proof= | | |proof= |
| + | {{TODO|t=тут везде написано <tex>\|A\|^n</tex> вместо <tex>\|A^n\|</tex>, надо пофиксить}} |
| + | |
| Обозначим для краткости <tex>r_\sigma(A)</tex> за <tex>r</tex>. | | Обозначим для краткости <tex>r_\sigma(A)</tex> за <tex>r</tex>. |
| | | |
− | По определению нижней грани, <tex>\forall \varepsilon > 0 \exists n_0: r \le \sqrt[n]{\|A\|^n} < r + \varepsilon</tex>. | + | По определению нижней грани, <tex>\forall \varepsilon > 0 \exists n_0: r \le \sqrt[n]{\|A^n\|} < r + \varepsilon</tex>. |
| | | |
| <tex>\forall n > n_0, n = p_n n_0 + q_n</tex>, где <tex>q_n = 0, 1, \ldots, n_0 - 1</tex>. | | <tex>\forall n > n_0, n = p_n n_0 + q_n</tex>, где <tex>q_n = 0, 1, \ldots, n_0 - 1</tex>. |
| | | |
− | <tex>\sqrt[n]{\|A\|^n} = \sqrt[p_n n_0 + q_n]{\|A\|^n}</tex>, <tex>\|A\|^n \le \|A^{p_n n_0}\| \|A\|^{q_n} \le \|A^n_0\|^p_0 \|A\|^{q_n}</tex> | + | <tex>\sqrt[n]{\|A^n\|} = \sqrt[p_n n_0 + q_n]{\|A^n\|}</tex>, <tex>\|A^n\| \le \|A^{p_n n_0}\| \|A^{q_n} \|\le \|A^n_0\|^p_0 \|A^{q_n}\|</tex> |
| | | |
− | Значит, <tex>\sqrt[n]{\|A\|^n} \le \sqrt[\frac{n}{p_0}]{\|A\|^{n_0}} \sqrt[\frac{n}{q_n}]{\|A\|}</tex>. | + | Значит, <tex>\sqrt[n]{\|A^n\|} \le \sqrt[\frac{n}{p_0}]{\|A^{n_0}\|} \sqrt[\frac{n}{q_n}]{\|A\|}</tex>. |
| | | |
| Здесь <tex>\sqrt[\frac{n}{p_0}]{\|A\|^{n_0}} = \sqrt[\frac{p_n n_0 + q_n}{p_0}]{\|A\|^{n_0}} \le \sqrt[\frac{p_n n_0}{p_0}]{\|A\|^{n_0}} = \sqrt[n_0]{\|A\|^{n_0}} < r_\sigma + \varepsilon</tex>, а <tex>\sqrt[\frac{n}{q_n}]{\|A\|} \le \sqrt[\frac{n}{n_0 - 1}]{\|A\|} \to \|A\|^0 = 1</tex>. | | Здесь <tex>\sqrt[\frac{n}{p_0}]{\|A\|^{n_0}} = \sqrt[\frac{p_n n_0 + q_n}{p_0}]{\|A\|^{n_0}} \le \sqrt[\frac{p_n n_0}{p_0}]{\|A\|^{n_0}} = \sqrt[n_0]{\|A\|^{n_0}} < r_\sigma + \varepsilon</tex>, а <tex>\sqrt[\frac{n}{q_n}]{\|A\|} \le \sqrt[\frac{n}{n_0 - 1}]{\|A\|} \to \|A\|^0 = 1</tex>. |
Эта статья находится в разработке!
В пределах этого параграфа подразумевается, что оператор [math]A[/math] — линейный, ограниченный.
Определение: |
Рассмотрим некоторое [math]\lambda \in \mathbb C[/math]. Если для него существует и непрерывен оператор [math]R_\lambda(A) = R\lambda = (A - \lambda I)^{-1}[/math] ([math]I[/math] — единичный оператор), то он называется резольвентой. Множество [math]\lambda[/math], для которых существует [math]R_\lambda[/math], обозначается [math]\rho(A)[/math], дополнение к нему обозначается [math]\sigma(A)[/math] и называется спектром оператора [math]A[/math]. |
Утверждение (замкнутость спектра): |
[math]\rho(A)[/math] — открытое множество в [math]\mathbb C[/math]; |
[math]\triangleright[/math] |
Пусть [math]\lambda_0 \in \rho(A)[/math], тогда существует [math]R_{\lambda_0}[/math].
[math]A - \lambda I = (A - \lambda_0 I) - (\lambda - \lambda_0) I = (A - \lambda_0 I) - (\lambda - \lambda_0) (A - \lambda_0 I) R_{\lambda_0} = (A - \lambda_0 I) (I - (\lambda - \lambda_0) R_{\lambda_0})[/math]
Если [math]|\lambda - \lambda_0| \|R_{\lambda_0}\| \lt 1[/math], то [math](I - (\lambda - \lambda_0) R_{\lambda_0})[/math] непрерывно обратим по теореме Банаха.
Тогда и оператор [math]A - \lambda I[/math] тоже непрерывно обратим, так как [math] (A - \lambda I)^{-1} = ((A - \lambda_0 I) (I - (\lambda - \lambda_0) R_{\lambda_0}))^{-1} = (I - (\lambda - \lambda_0) R_{\lambda_0})^{-1} (A - \lambda_0 I)^{-1} [/math], и тогда он непрерывен как компзиция непрерывных.
Нужное нам условие выполняется, если [math]|\lambda - \lambda_0| \lt \frac1{\|R_{\lambda_0}\|}[/math], таким образом, любая точка [math]\lambda_0[/math] множества [math]\rho(A)[/math] входит в него вместе с некоторой окрестностью. |
[math]\triangleleft[/math] |
Утверждение (вхождение спектра в круг радиуса ||А||): |
[math]\{ |\lambda| \gt \|A\|\} \subset \rho(A)[/math] |
[math]\triangleright[/math] |
[math]A - \lambda I = -\lambda(I - \frac1\lambda A)[/math]
Если [math]|\lambda| \gt \|A\|[/math], то [math]\frac1{|\lambda|} \|A\| \lt 1[/math], [math](I - \frac1\lambda A)[/math] непрерывно обратим, и [math]A[/math] имеет резольвенту. Отсюда мгновенно получаем требуемое. |
[math]\triangleleft[/math] |
Определение: |
[math]r_\sigma(A) = \inf\limits_{n \in \mathbb N} \sqrt[n]{\|A^n\|}[/math] — спектральный радиус оператора. |
Так как [math]\|A^n\| \le \|A\|^n[/math], то [math]r_\sigma(A) \le \|A\|[/math].
Утверждение: |
[math]r_\sigma(A) = \lim\limits_{n \to \infty} \sqrt[n]{\|A^n\|}[/math] |
[math]\triangleright[/math] |
TODO: тут везде написано [math]\|A\|^n[/math] вместо [math]\|A^n\|[/math], надо пофиксить
Обозначим для краткости [math]r_\sigma(A)[/math] за [math]r[/math].
По определению нижней грани, [math]\forall \varepsilon \gt 0 \exists n_0: r \le \sqrt[n]{\|A^n\|} \lt r + \varepsilon[/math].
[math]\forall n \gt n_0, n = p_n n_0 + q_n[/math], где [math]q_n = 0, 1, \ldots, n_0 - 1[/math].
[math]\sqrt[n]{\|A^n\|} = \sqrt[p_n n_0 + q_n]{\|A^n\|}[/math], [math]\|A^n\| \le \|A^{p_n n_0}\| \|A^{q_n} \|\le \|A^n_0\|^p_0 \|A^{q_n}\|[/math]
Значит, [math]\sqrt[n]{\|A^n\|} \le \sqrt[\frac{n}{p_0}]{\|A^{n_0}\|} \sqrt[\frac{n}{q_n}]{\|A\|}[/math].
Здесь [math]\sqrt[\frac{n}{p_0}]{\|A\|^{n_0}} = \sqrt[\frac{p_n n_0 + q_n}{p_0}]{\|A\|^{n_0}} \le \sqrt[\frac{p_n n_0}{p_0}]{\|A\|^{n_0}} = \sqrt[n_0]{\|A\|^{n_0}} \lt r_\sigma + \varepsilon[/math], а [math]\sqrt[\frac{n}{q_n}]{\|A\|} \le \sqrt[\frac{n}{n_0 - 1}]{\|A\|} \to \|A\|^0 = 1[/math].
Отсюда, [math]r \le \sqrt[n]{\|A\|^n} r + \varepsilon[/math], [math]\lim\limits_{n \to \infty} \sqrt[n]{\|A\|^n} \to r[/math]. |
[math]\triangleleft[/math] |
Утверждение: |
[math]\sigma(A) \subset {|\lambda| \lt r_\sigma(A)}[/math] |
[math]\triangleright[/math] |
Проверим, при каких [math]r_\sigma[/math] будет сходиться ряд [math]\sum\limits_{n=0}^{\infty} (\frac1\lambda A)^n[/math]. В этом случае оператор [math]A - \lambda I = -\lambda (I - \frac1\lambda A)[/math], очевидно, будет непрерывно обратим.
[math]\|\sum\limits_{n=0}^{\infty} (\frac1\lambda A)^n \| \le \sum\limits_{n=0}^{\infty} |\frac1\lambda|^n \|A\|^n[/math], по радикальному признаку Коши, последний ряд сходится, если [math]\sqrt[n]{|\frac1\lambda|^n \|A\|^n} = |\frac1\lambda| \sqrt[n]{\|A\|^n} \to |\frac1\lambda| r_\sigma \lt 1[/math].
То есть, при [math]r_\sigma \lt |\lambda|[/math], [math]\lambda \in \rho(A)[/math], и [math]\sigma(A) \subset V_{r_\sigma}(0)[/math] |
[math]\triangleleft[/math] |
Теорема: |
[math]\|A\| \lt +\infty \Rightarrow \sigma(A) \ne \varnothing[/math] |
Доказательство: |
[math]\triangleright[/math] |
Если [math]L(X)[/math] (пространство линейных ограниченных операторов [math]A: X \rightarrow X[/math]) банахово, то в нем можно рассматривать операторно степенные ряды [math]\sum\limits_{n=0}^{\infty} A_n\lambda^n[/math], их свойства копируют свойства обычных степенных рядов.
Докажем, что оператор [math]R_\lambda[/math] аналитичен в [math]\rho(A)[/math] и в [math]\infty[/math].
[math]A - \lambda I = A = (A - \lambda_0 I) - (\lambda - \lambda_0)I = (A - \lambda_0 I) - (\lambda - \lambda_0)(A - \lambda_0 I)R_{\lambda_0} = (A - \lambda_0 I)(I - (\lambda - \lambda_0)R_{\lambda_0})[/math]
[math](I - (\lambda - \lambda_0)R_{\lambda_0}) = \sum\limits_{n=0}^{\infty} R_{\lambda_0}^n (\lambda - \lambda_0)^n[/math] — сходится при [math]|\lambda - \lambda_0| \approx 0[/math].
TODO: вот здесь что-то подозрительное
[math]A - \lambda I = (A - \lambda_0 I) \sum\limits_{n=0}^{\infty} R_{\lambda_0}^n (\lambda - \lambda_0)^n = \sum\limits_{n=0}^{\infty} R_{\lambda_0}^{n-1} (\lambda - \lambda_0)^n[/math], следовательно, [math](A - \lambda I)^{-1}[/math] аналитична.
TODO: WAT
Также, так как [math]A - \lambda I = -\lambda (I - \frac1\lambda A)[/math], то при [math]|\lambda| \approx \infty[/math], [math]R_\lambda = -\sum\limits_{n=0}^{\infty} \frac{A^n}{\lambda^{n-1}}[/math], и [math]R_lambda[/math] аналитична при [math]\lambda = \infty[/math].
Теперь допустим, что [math]\|A\| \lt +\infty[/math] и [math]\sigma(A) = \varnothing[/math]. Тогда [math]\rho(A) = \mathbb C[/math].
Для любого [math]r[/math] оператор [math]R_\lambda(z)[/math] ограничен в шарах [math]0 \lt z \lt r[/math] и [math]z \gt r[/math].
Но [math]R_\lambda[/math] аналитичен на всей комплексной плоскости, значит, по теореме Лиувилля, [math]R_\lambda[/math] есть константа, пришли к противоречию.
TODO: НЕТ, НЕ ПРИШЛИ ЕЩЕ! |
[math]\triangleleft[/math] |