Теорема Брукса — различия между версиями
| Danek g30 (обсуждение | вклад) | Danek g30 (обсуждение | вклад)  | ||
| Строка 24: | Строка 24: | ||
| #<tex>\Delta(G) \ge 3</tex>, тогда: | #<tex>\Delta(G) \ge 3</tex>, тогда: | ||
| ##Если <tex>G</tex> не является вершинно двусвязным графом, тогда в графе <tex> G</tex> <tex> \exists</tex> <tex> v \in V</tex> {{---}} точка сочленения. Пусть <tex>G_1,G_2</tex> {{---}} две компоненты связности, полученные при удалении вершины <tex>v</tex>. Тогда, по выше доказанной лемме эти компоненты можно правильно раскрасить в не более чем  <tex>\Delta</tex> цветов. Поскольку количество соседей вершины <tex> v </tex> в каждой из компонент не более <tex> \Delta - 1</tex>, то <tex>G</tex> можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов. | ##Если <tex>G</tex> не является вершинно двусвязным графом, тогда в графе <tex> G</tex> <tex> \exists</tex> <tex> v \in V</tex> {{---}} точка сочленения. Пусть <tex>G_1,G_2</tex> {{---}} две компоненты связности, полученные при удалении вершины <tex>v</tex>. Тогда, по выше доказанной лемме эти компоненты можно правильно раскрасить в не более чем  <tex>\Delta</tex> цветов. Поскольку количество соседей вершины <tex> v </tex> в каждой из компонент не более <tex> \Delta - 1</tex>, то <tex>G</tex> можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов. | ||
| − | ##Если <tex>G</tex> является вершинно двусвязным графом. Тогда, <tex> \exists</tex> <tex> v,u \in V :(u,v) \notin E</tex> и при удалении вершин <tex>v,u</tex> граф теряет связность . Пусть <tex>G_1,G_2</tex>  {{---}} два подграфа <tex> G:(G_1 \cap G_2 = \{v,u\})  \land (G_1 \cup G_2 = G)</tex>. Рассмотрим два случая. | + | ##Если <tex>G</tex> является вершинно двусвязным графом. Тогда, <tex> \exists</tex> <tex> v,u \in V :(u,v) \notin E</tex> и при удалении вершин <tex>v,u</tex> граф теряет связность. Пусть <tex>G_1,G_2</tex>  {{---}} два подграфа <tex> G:(G_1 \cap G_2 = \{v,u\})  \land (G_1 \cup G_2 = G)</tex>. Рассмотрим два случая. | 
| ### Если сумма степеней вершин <tex>u,v</tex> в каждом из подграфов <tex>G_1,G_2</tex> меньше <tex>2(\Delta-1)</tex>. Тогда, в одном из данных подграфах <tex> deg\ u \le \Delta - 2 </tex> или <tex> deg\ v \le \Delta - 2 </tex>. Тоесть, эти подграфы можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов так, чтобы вершины <tex> u,v </tex> были бы разных цветов. А из этого следует, что граф <tex>G</tex> тоже можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов. | ### Если сумма степеней вершин <tex>u,v</tex> в каждом из подграфов <tex>G_1,G_2</tex> меньше <tex>2(\Delta-1)</tex>. Тогда, в одном из данных подграфах <tex> deg\ u \le \Delta - 2 </tex> или <tex> deg\ v \le \Delta - 2 </tex>. Тоесть, эти подграфы можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов так, чтобы вершины <tex> u,v </tex> были бы разных цветов. А из этого следует, что граф <tex>G</tex> тоже можно правильно раскрасить в  не более чем  <tex>\Delta</tex> цветов. | ||
| − | ### Если сумма степеней вершин <tex>u,v</tex> в одном из подграфов <tex>G_1,G_2</tex> равна <tex>2(\Delta-1)</tex>. Тогда, степени обоих вершин в одном из подграфов равны <tex> \Delta - 1</tex>, рассмотрим например,что в подграфе <tex>G_1</tex>: | + | ### Если сумма степеней вершин <tex>u,v</tex> в одном из подграфов <tex>G_1,G_2</tex> равна <tex>2(\Delta-1)</tex>. Тогда, степени обоих вершин в одном из подграфов равны <tex> \Delta - 1</tex>, рассмотрим например, что в подграфе <tex>G_1</tex>: | 
| ###* Если вершины <tex>u,v</tex> смежны с вершиной <tex>p \in G_2</tex>, тогда мы можем правильно раскрасить <tex>G_2</tex>, где степени вершин <tex>u,v</tex> равны <tex>1</tex>, в не более чем <tex> \Delta </tex> цветов так, чтобы вершины <tex>u,v</tex> были  одного цвета. Следовательно, можно покрасить граф <tex>G</tex> в не более чем <tex>\Delta</tex> цветов. | ###* Если вершины <tex>u,v</tex> смежны с вершиной <tex>p \in G_2</tex>, тогда мы можем правильно раскрасить <tex>G_2</tex>, где степени вершин <tex>u,v</tex> равны <tex>1</tex>, в не более чем <tex> \Delta </tex> цветов так, чтобы вершины <tex>u,v</tex> были  одного цвета. Следовательно, можно покрасить граф <tex>G</tex> в не более чем <tex>\Delta</tex> цветов. | ||
| ###*[[Файл:Brooks_2.png|400px|thumb|Алгоритм раскраски. Третий случай, пятый шаг]]Если вершины <tex>u,v</tex> смежны с вершинами <tex>u_1,v_1 \in G_2</tex> соответственно, тогда вместо вершин <tex>\{u,v\}</tex> рассмотрим вершины <tex>\{u,v_1\}</tex>. Заметим, что при удалении этих вершин граф потеряет связность, и между ними нет ребра. При этом, сумма степеней новой пары вершин в каждой из компонент, полученных после их удаления, меньше <tex>2(\Delta-1)</tex>. Поэтому, если для этой пары вершин  провести рассуждения аналогичные тем, которые проводились для вершин <tex> v,u</tex>, получится, что граф <tex> G</tex> можно правильно раскрасить в  не более чем <tex>\Delta </tex> цветов. | ###*[[Файл:Brooks_2.png|400px|thumb|Алгоритм раскраски. Третий случай, пятый шаг]]Если вершины <tex>u,v</tex> смежны с вершинами <tex>u_1,v_1 \in G_2</tex> соответственно, тогда вместо вершин <tex>\{u,v\}</tex> рассмотрим вершины <tex>\{u,v_1\}</tex>. Заметим, что при удалении этих вершин граф потеряет связность, и между ними нет ребра. При этом, сумма степеней новой пары вершин в каждой из компонент, полученных после их удаления, меньше <tex>2(\Delta-1)</tex>. Поэтому, если для этой пары вершин  провести рассуждения аналогичные тем, которые проводились для вершин <tex> v,u</tex>, получится, что граф <tex> G</tex> можно правильно раскрасить в  не более чем <tex>\Delta </tex> цветов. | ||
Версия 01:18, 20 января 2013
Вспомогательная Лемма
| Лемма: | 
| Пусть  - произвольный связный неориентированный граф и  - максимальная степень вершин . Если в таком графе существует вершина  степени , то . | 
| Доказательство: | 
| Запустим алгоритм обхода в ширину из вершины . Пронумеруем вершины где вершина рассмотренная на ом шаге алгоритма bfs. Далее начнем красить вершины в обратном порядке в один из цветов так, чтобы никакое ребро графа не соединяло вершины одного цвета. На ом шаге покраски, для вершины есть не более уже покрашенных соседей (т.к и предок данной вершины в дереве bfs еще не покрашен, а если предка нет, то это вершина и есть ), следовательно вершину можно покрасить по крайней мере в один из свободных цветов. Поскольку на каждом шаге алгоритм отработает корректно, следовательно граф можно правильно раскрасить в не более чем цветов, то есть . | 
Теорема
| Теорема (Брукса): | 
| Пусть  — связный неориентированный граф и  не является  или , ни для кого , тогда , где  - максимальная степень вершин  | 
| Доказательство: | 
| Для доказательства теоремы рассмотрим несколько случаев: 
 | 


