Альтернатива Фредгольма — Шаудера — различия между версиями
(→Теорема о счетности спектра компактного оператора) |
|||
Строка 54: | Строка 54: | ||
{{Теорема | {{Теорема | ||
− | |statement=Спектр компактного оператора не более чем счётен | + | |statement= |
− | |proof= | + | Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
+ | |proof= | ||
+ | По общим фактам о пектре ограниченного оператора, <tex>\lambda \in \sigma(A) \implies |\lambda| \le \|A\| \implies |\lambda| \in [0, \|A\|]</tex>. Проверим, что <tex>\forall \alpha > 0</tex>, на отрезке <tex>[\alpha\ldots|A|]</tex> конечное число точек спектра. Пусть обратное, тогда занумеруем их: <tex>\lambda_n \neq \lambda_m</tex>. <tex>x_n</tex>— собственные вектора. | ||
<tex>\lambda_n \geq \alpha > 0</tex> | <tex>\lambda_n \geq \alpha > 0</tex> | ||
<tex>L_n = \mathcal{L} \{ x_1,\ldots, x_n \}</tex>. Очевидно, что <tex>L_n \subset L_{n+1}</tex>. Проверим, что включения строгие. | <tex>L_n = \mathcal{L} \{ x_1,\ldots, x_n \}</tex>. Очевидно, что <tex>L_n \subset L_{n+1}</tex>. Проверим, что включения строгие. |
Версия 17:07, 8 июня 2013
, непрерывен на
A — компактный оператор (
)Интегральные уравнения Фредгольма:
в .
X — B-пространство,
, A — компактный.Ставим задачу: y дано, когда
разрешимо относительно x?— операторные уравнения второго рода (явно выделен I). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: , следовательно, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения x будут непрерывно зависеть от y. Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Далее будем считать
. , таким образом, ядро T — неподвижные точки A. — единичный шар, — подпространство X. . Но так как A — компактный, — компакт в Y, но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если A — компактный, то .Теорема: |
Пусть , A компактен |
Доказательство: |
Ранее (пятый семестр же?) мы доказали, что если уравнение допускает априорную оценку ( ), то R(T) замкнуто. Нужно доказать, что у T есть априорная оценка.. Значит, все решения уравнения записываются в форме , где — одно из решений, z принадлежит . Но Рассмотрим функцию от n переменных здесь) Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса , среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через y. |
TODO: пропуск
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
<wikitex>
TODO: каким?), $R(T) = (\operatorname{Ker} T^*)^\perp$. Рассмотрим $y = Tx$, очевидно, оно разрешимо, когда $y \in R(T)$, то есть $y \in (\operatorname{Ker} T^*)^\perp$ </wikitex> |
TODO: пропуск
Теорема о счетности спектра компактного оператора
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
По общим фактам о пектре ограниченного оператора, . Проверим, что , на отрезке конечное число точек спектра. Пусть обратное, тогда занумеруем их: . — собственные вектора. . Очевидно, что . Проверим, что включения строгие. Пусть проверено, что — ЛНЗ. Докажем тогда, что — ЛНЗ. Пусть . Подействуем на это равенство A : . Так как — собственные вектора, , но . Но — ЛНЗ, поэтому разложение через их комбинацию единственно. Значит, . , поэтому и , но — мы получили противоречие, поэтому — ЛНЗ и включение строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре:
Система ограничена. Определим . В силу компактности A из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя; противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность Осталось проверить, что . Проверим, что то, что находится в скобке, принадлежит . Если это так, то . По построению , , где первый множитель не меньше , а второй — , в итоге и, значит, из не выделить сходящейся подпоследовательности. . . , . Подействуем A: . Разность . и, следовательно, принадлежит . |