Альтернатива Фредгольма — Шаудера — различия между версиями
(→Теорема о счетности спектра компактного оператора) |
Sementry (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
__TOC__ | __TOC__ | ||
− | <tex>X = C[0;1]</tex>, <tex>K(u,v)</tex> | + | Пусть <tex>X = C[0;1]</tex>, <tex>K(u,v)</tex> непрерывна на <tex>[0;1]^2</tex>. |
− | <tex>A(x,t)=\int\limits_0^1 K(t,s) x(s) ds, x(s) \in C[0;1]</tex> | + | <tex>A(x,t)=\int\limits_0^1 K(t,s) x(s) ds, x(s) \in C[0;1]</tex>. |
− | + | <tex>A \colon [0;1] \to [0;1]</tex>, <tex> A </tex> — компактный оператор. | |
− | + | Будем изучать так называемые интегральные уравнения Фредгольма: <tex>f(t) = x(t) + \lambda \int\limits_0^1 K(t,s) x(s) ds</tex> в <tex>C[0;1]</tex>. | |
+ | Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы. | ||
+ | Пусть <tex>X</tex> — <tex>B</tex>-пространство, <tex>A \colon B \to B</tex>, A — компактный. <tex>T = \lambda I - A</tex> | ||
− | + | Ставим задачу: <tex>y</tex> дано, когда <tex>Tx=y</tex> разрешимо относительно <tex>x</tex>? | |
− | + | <tex>y = \lambda x - A x</tex> — операторные уравнения второго рода (явно выделен <tex>I</tex>). Уравнения первого рода (<tex>y=Bx</tex>) решаются гораздо сложней. Объясняется это достаточно просто: <tex>y = \lambda x - A x = \lambda (x - \frac 1 \lambda A)x, \frac 1 {|\lambda|} {\|A\|} < 1 </tex>, следовательно, по теореме Банаха, <tex>I - \frac 1 \lambda A</tex> непрерывно обратим, следовательно, при достаточно больших <tex>\lambda</tex>, <tex>y=\lambda x - A x</tex> разрешимо при любой левой части, причём решения <tex>x</tex> будут непрерывно зависеть от <tex>y</tex>. Интересна ситуация при <tex>|\lambda| < \|A\|</tex>. В случае компактного A ответ даёт теория Шаудера. | |
− | <tex> | + | Далее будем считать <tex>\lambda = 1</tex>. <tex>T = I - A</tex> |
− | + | <tex>\operatorname{Ker}T = \{x|x - Ax = 0\} = \{x|x=Ax\}</tex>, таким образом, ядро <tex>T</tex> — неподвижные точки <tex>A</tex>. | |
− | <tex>\overline V</tex> — единичный шар, <tex>Y = Ker | + | |
+ | Пусть <tex>\overline V</tex> — единичный шар, <tex>Y = \operatorname{Ker}T</tex> — подпространство <tex>X</tex>. | ||
+ | |||
+ | Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \Rightarrow \overline W = A \overline W</tex>. Так как <tex>A</tex> — компактный, <tex>\overline W</tex> — компакт в <tex>Y</tex>, но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если <tex>A</tex> — компактный, то <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>. | ||
{{Теорема | {{Теорема |
Версия 18:44, 9 июня 2013
Пусть
, непрерывна на ..
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма:
в .Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть
— -пространство, , A — компактный.Ставим задачу:
дано, когда разрешимо относительно ?— операторные уравнения второго рода (явно выделен ). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: , следовательно, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Далее будем считать
., таким образом, ядро — неподвижные точки .
Пусть
— единичный шар, — подпространство .Допустим, что
. Так как — компактный, — компакт в , но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если — компактный, то .Теорема: |
Пусть , A компактен |
Доказательство: |
Ранее (пятый семестр же?) мы доказали, что если уравнение допускает априорную оценку ( ), то R(T) замкнуто. Нужно доказать, что у T есть априорная оценка.. Значит, все решения уравнения записываются в форме , где — одно из решений, z принадлежит . Но Рассмотрим функцию от n переменных здесь) Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса , среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через y. |
TODO: пропуск
Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
<wikitex>
TODO: непонятно, почему образ замкнут оказывается), по общим теоремам о сопряженном операторе ( TODO: каким?), $R(T) = (\operatorname{Ker} T^*)^\perp$. Рассмотрим $y = Tx$, очевидно, оно разрешимо, когда $y \in R(T)$, то есть $y \in (\operatorname{Ker} T^*)^\perp$ </wikitex> |
Теорема о счетности спектра компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные элементы .Покажем, что при любом , собственные элементы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность . Проверим, что то, что находится в скобке, принадлежит .. . , . Подействуем A: . Разность . и, следовательно, принадлежит . Таким образом, Осталось проверить, что только . Получаем: , где первый множитель не меньше , а второй — (по построению ) , в итоге и, значит, из не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке действительно конечное число собственных чисел, и спектр счетен. может быть предельной точкой. Пусть это не так, и какое-то — предельная точка, это означает, что для любого , во множестве содержится собственное число, то есть в отрезке содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. |