Альтернатива Фредгольма — Шаудера — различия между версиями
Sementry (обсуждение | вклад) |
Sementry (обсуждение | вклад) |
||
Строка 101: | Строка 101: | ||
Тогда <tex> R(T) = X \Leftrightarrow \operatorname{Ker} T = \{0\} </tex>. | Тогда <tex> R(T) = X \Leftrightarrow \operatorname{Ker} T = \{0\} </tex>. | ||
|proof= | |proof= | ||
− | {{ | + | <tex> \Longrightarrow </tex>: |
+ | |||
+ | Пусть существует <tex> x_1 \ne 0, x_1 \in \operatorname{Ker} T = N_1 </tex>. | ||
+ | |||
+ | Так как <tex> R(T) = X </tex>, то у уравнения <tex> Tx = x_1 </tex> существует решение, обозначим его <tex> x_2 </tex>. | ||
+ | |||
+ | <tex> T(Tx_2) = T(x_1) = 0 </tex>, то есть, <tex> x_2 \in \operatorname{Ker} T^2 = N_2 </tex>. | ||
+ | |||
+ | Заметим, что <tex> x_2 \notin N_1 </tex>, в противном случае <tex> x_1 = Tx_2 = 0 </tex>, что противоречит нашему предположению. | ||
+ | |||
+ | Значит, <tex> N_1 \subset N_2 </tex> (строго). Действуя аналогично, берем <tex> x_3 </tex> решение уравнения — <tex> Tx = x_2 </tex>, <tex> x_3 \notin N_2, x_3 \in N_3 </tex>. | ||
+ | |||
+ | Получаем бесконечную цепочку строго вложенных множеств <tex> N_k </tex>, существование которой противоречит предыдущему утверждению, значит, <tex> \operatorname{Ker} T = \{0\} </tex>. | ||
+ | |||
+ | <tex> \Longleftarrow </tex>: | ||
+ | |||
+ | Пусть <tex> \operatorname{Ker} T = \{0\} </tex>. | ||
+ | |||
+ | <tex> R(T) </tex> — замкнутое множество, <tex> T^* = I - A^* </tex>, <tex> R(T^*) = (\operatorname{Ker} T)^{\perp} = (\{0\})^{\perp} = X^* </tex>. | ||
+ | |||
+ | Тогда <tex> \operatorname{Ker} T^* = {0} </tex>, и <tex> R(T) = (\operatorname{Ker} T^*)^{\perp} = X </tex>. | ||
}} | }} | ||
Версия 21:31, 9 июня 2013
Пусть
, непрерывна на ..
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма:
в .Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть
— -пространство, , A — компактный.Ставим задачу:
дано, когда разрешимо относительно ?— операторные уравнения второго рода (явно выделен ). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: , следовательно, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Далее будем считать
., таким образом, ядро — неподвижные точки .
Пусть
— единичный шар, — подпространство .Допустим, что
. Так как — компактный, — компакт в , но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если — компактный, то .Теорема: |
Пусть , компактен, тогда замкнуто. |
Доказательство: |
Ранее мы доказали, что если уравнение допускает априорную оценку ( ), то замкнуто. Нужно доказать, что у есть априорная оценка. . Значит, все решения уравнения записываются в форме , где — одно из решений, z принадлежит . Но . Рассмотрим функцию от здесь) . TODO: а на каком компакте непрерывна? переменных Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса, среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через . Допустим, априорной оценки не существует, тогда можно построить последовательность и (минимальных по норме решений с правой частью ), таких, что .В силу линейности уравнения, можно выбрать с единичной нормой, тогда ., так как ограничено и компактен, то из можно выделить сходящуюся подпоследовательность (далее, видимо, за обозначаются члены этой подпоследовательности), . Тогда получаем TODO: переписать так, чтобы было понятно, что пользуемся только подпоследовательностью. .Но , значит, .То есть, .Получили, что , но, так как мы выбирали минимальное по норме , то — противоречие, значит, априорная оценка существует, замкнуто, и теорема доказана. |
Докажем теперь два утверждения.
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
Идея доказательства подобных утверждений следующая: идем от противного и, пользуясь леммой Рисса, строим ограниченную последовательность точек. Применяя к ней , получаем последовательность, из которой можно выделить сходящуюся подпоследовательность. После этого ищем противоречие с условием.
Второе слагаемое является компактным оператором, обозначим его за , ., следовательно, Пусть , и , тогда , то есть, .Допустим, что (строго). — подпространство .Применим к паре подпространств лемму Рисса:
Таким образом выстраиваем последовательность ., из можно выделить сходящуюся подпоследовательность. . Обозначим сумму в скобках за .Заметим, что .. Здесь первое слагаемое равно нулю по определению последовательности Но раз . Второе же, так как операторы и коммутируют, равно , и . , то , и , чего не может быть, поскольку в этом случае мы не сможем выделить из сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана. |
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
: Пусть существует .Так как , то у уравнения существует решение, обозначим его ., то есть, . Заметим, что , в противном случае , что противоречит нашему предположению.Значит, (строго). Действуя аналогично, берем решение уравнения — , .Получаем бесконечную цепочку строго вложенных множеств , существование которой противоречит предыдущему утверждению, значит, .: Пусть .Тогда — замкнутое множество, , . , и . |
Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
<wikitex>
TODO: непонятно, почему образ замкнут оказывается), по общим теоремам о сопряженном операторе ( TODO: каким?), $R(T) = (\operatorname{Ker} T^*)^\perp$. Рассмотрим $y = Tx$, очевидно, оно разрешимо, когда $y \in R(T)$, то есть $y \in (\operatorname{Ker} T^*)^\perp$ </wikitex> |
Теорема о счетности спектра компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные элементы .Покажем, что при любом , собственные элементы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность . Проверим, что то, что находится в скобке, принадлежит .. . , . Подействуем A: . Разность . и, следовательно, принадлежит . Таким образом, Осталось проверить, что только . Получаем: , где первый множитель не меньше , а второй — (по построению ) , в итоге и, значит, из не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке действительно конечное число собственных чисел, и спектр счетен. может быть предельной точкой. Пусть это не так, и какое-то — предельная точка, это означает, что для любого , во множестве содержится собственное число, то есть в отрезке содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. |