Теория Гильберта-Шмидта — различия между версиями
Smolcoder (обсуждение | вклад) м |
Sementry (обсуждение | вклад) м |
||
Строка 6: | Строка 6: | ||
}} | }} | ||
− | В этом параграфе будем иметь дело с Гильбертовым пространством <tex>\mathcal{H}</tex>, но над полем <tex>\mathbb{C}</tex> | + | {{TODO|t=Расставить точки в конце предложений, а то режет глаз.}} |
+ | |||
+ | В этом параграфе будем иметь дело с Гильбертовым пространством <tex>\mathcal{H}</tex>, но над полем <tex>\mathbb{C}</tex>. | ||
# (над <tex>\mathbb{R}</tex>): <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | # (над <tex>\mathbb{R}</tex>): <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | ||
# (над <tex>\mathbb{C}</tex>): <tex>\langle x, y \rangle = \overline{\langle y, x \rangle}</tex> | # (над <tex>\mathbb{C}</tex>): <tex>\langle x, y \rangle = \overline{\langle y, x \rangle}</tex> | ||
− | В конечномерном пространстве <tex>\mathbb{R}^n = \{\langle x_1, x_2, \ldots, x_n \rangle\} </tex> (<tex>x_i \in \mathbb{R}</tex>) скалярное произведение двух векторов определялось как <tex>\langle \bar{x}, \bar{y} \rangle = \sum\limits_{k=1}^n x_n y_n</tex> | + | В конечномерном пространстве <tex>\mathbb{R}^n = \{\langle x_1, x_2, \ldots, x_n \rangle\} </tex> (<tex>x_i \in \mathbb{R}</tex>) скалярное произведение двух векторов определялось как <tex>\langle \bar{x}, \bar{y} \rangle = \sum\limits_{k=1}^n x_n y_n</tex>. |
− | В <tex>\mathbb{C}^n = \{\langle z_1, z_2, \ldots, z_n \rangle\}</tex> (<tex>z_i \in \mathbb{C}</tex>) же, <tex> \langle \bar{z}, \bar{y} \rangle = \sum\limits_{k=1}^n z_i \overline{y_i}</tex> | + | В <tex>\mathbb{C}^n = \{\langle z_1, z_2, \ldots, z_n \rangle\}</tex> (<tex>z_i \in \mathbb{C}</tex>) же, <tex> \langle \bar{z}, \bar{y} \rangle = \sum\limits_{k=1}^n z_i \overline{y_i}</tex>. |
Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения: <tex>\langle x, x \rangle \ge 0</tex>: | Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения: <tex>\langle x, x \rangle \ge 0</tex>: | ||
− | <tex>\langle \overline{z}, \overline{z} \rangle = \sum\limits_{k=1}^n z_k \overline{z_k} = \sum\limits_{k=1}^n |z_k|^2 \in \mathbb{R}, > 0</tex> | + | <tex>\langle \overline{z}, \overline{z} \rangle = \sum\limits_{k=1}^n z_k \overline{z_k} = \sum\limits_{k=1}^n |z_k|^2 \in \mathbb{R}, > 0</tex>. |
− | Нас будут интересовать только линейные ограниченные операторы <tex>\mathcal{A} : \mathcal{H} \to \mathcal{H}</tex> | + | Нас будут интересовать только линейные ограниченные операторы <tex>\mathcal{A} : \mathcal{H} \to \mathcal{H}</tex>. |
{{Определение | {{Определение | ||
− | |definition=Оператор <tex>\mathcal{A}</tex> называется ''самосопряжённым'' (<tex>\mathcal{A} = \mathcal{A}^*</tex>), если <tex>\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle</tex> | + | |definition=Оператор <tex>\mathcal{A}</tex> называется ''самосопряжённым'' (<tex>\mathcal{A} = \mathcal{A}^*</tex>), если <tex>\forall x, y : \langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}y \rangle</tex>. |
}} | }} | ||
− | Посмотрим, что же такое ''самосопряжённость'' для конечномерного оператора в <tex>\mathbb{C}^n</tex>. В <tex>\mathbb{C}^n</tex> линейный оператор представляет из себя матрицу <tex>A = \{a_{ij}\}</tex> | + | Посмотрим, что же такое ''самосопряжённость'' для конечномерного оператора в <tex>\mathbb{C}^n</tex>. В <tex>\mathbb{C}^n</tex> линейный оператор представляет из себя матрицу <tex>A = \{a_{ij}\}</tex>. |
{{Утверждение | {{Утверждение | ||
|statement=Оператор <tex>\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^n</tex> самосопряжён <tex>\iff</tex> <tex>A = \overline{A^T}</tex> | |statement=Оператор <tex>\mathcal{A} : \mathbb{C}^n \to \mathbb{C}^n</tex> самосопряжён <tex>\iff</tex> <tex>A = \overline{A^T}</tex> | ||
− | |proof=<tex>Az = \{a_{ij}\} \cdot \left(\begin{array}{c}z_1\\\vdots\\z_n\end{array}\right) = </tex> <tex>\left(\sum\limits_{j=1}^n a_{ij} z_j\right)_{i=1..n}</tex> | + | |proof=<tex>Az = \{a_{ij}\} \cdot \left(\begin{array}{c}z_1\\\vdots\\z_n\end{array}\right) = </tex> <tex>\left(\sum\limits_{j=1}^n a_{ij} z_j\right)_{i=1..n}</tex>. |
<tex>\langle \mathcal{A}z, y \rangle = \langle Az, y\rangle = </tex> <tex>\sum\limits_{i=1}^n (Az)_i \overline{y_i} = </tex> <tex>\sum\limits_{i=1}^n\left(\sum\limits_{j=1}^n a_{ij} z_j\right)\overline{y_i} = </tex> <tex>\sum\limits_{i,j=1}^n a_{ij} z_j \overline{y_i} = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n a_{ij}\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n \overline{\overline{a_{ij}}}\cdot\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n z_j \overline{\left(\sum\limits_{i=1}^n\overline{a_{ij}}y_i\right)} = </tex> <tex>\langle z, By \rangle = </tex> <tex>\langle z, \overline{A^T} y \rangle</tex> | <tex>\langle \mathcal{A}z, y \rangle = \langle Az, y\rangle = </tex> <tex>\sum\limits_{i=1}^n (Az)_i \overline{y_i} = </tex> <tex>\sum\limits_{i=1}^n\left(\sum\limits_{j=1}^n a_{ij} z_j\right)\overline{y_i} = </tex> <tex>\sum\limits_{i,j=1}^n a_{ij} z_j \overline{y_i} = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n a_{ij}\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n\left(\sum\limits_{i=1}^n \overline{\overline{a_{ij}}}\cdot\overline{y_i}\right)z_j = </tex> <tex>\sum\limits_{j=1}^n z_j \overline{\left(\sum\limits_{i=1}^n\overline{a_{ij}}y_i\right)} = </tex> <tex>\langle z, By \rangle = </tex> <tex>\langle z, \overline{A^T} y \rangle</tex> | ||
Строка 35: | Строка 37: | ||
<tex>\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x \rangle </tex>, <tex>\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle}</tex> <tex>\Rightarrow</tex> <tex>\langle \mathcal{A}x, x\rangle \in \mathbb{R}</tex>, так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю. | <tex>\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x \rangle </tex>, <tex>\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle}</tex> <tex>\Rightarrow</tex> <tex>\langle \mathcal{A}x, x\rangle \in \mathbb{R}</tex>, так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю. | ||
− | + | Рассмотрим <tex>\lambda = \mu + i\nu \in \mathbb{C}</tex>, <tex>\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}</tex>. | |
− | |||
− | |||
<tex>\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> [<tex>\mu \in \mathbb{R}</tex>, <tex>\mathcal{A}</tex>{{---}} самосопряжённый <tex>\Rightarrow</tex> <tex>(\mu\mathcal{I}-\mathcal{A})^* = (\mu\mathcal{I}-\mathcal{A})</tex>] <tex> = \|(\mu\mathcal{I}-\mathcal{A}x\|^2 + |\nu|^2\cdot\|x\|^2 + (-i\nu)\langle (\mu\mathcal{I}-\mathcal{A})x, x\rangle + i\nu\langle x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2</tex> | <tex>\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> [<tex>\mu \in \mathbb{R}</tex>, <tex>\mathcal{A}</tex>{{---}} самосопряжённый <tex>\Rightarrow</tex> <tex>(\mu\mathcal{I}-\mathcal{A})^* = (\mu\mathcal{I}-\mathcal{A})</tex>] <tex> = \|(\mu\mathcal{I}-\mathcal{A}x\|^2 + |\nu|^2\cdot\|x\|^2 + (-i\nu)\langle (\mu\mathcal{I}-\mathcal{A})x, x\rangle + i\nu\langle x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2</tex> | ||
− | Итого: <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex> | + | Итого: <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex>. |
− | + | ||
{{Утверждение | {{Утверждение | ||
Строка 54: | Строка 54: | ||
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex> | <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex> | ||
− | + | * Случай 2. <tex>\lambda \notin \mathbb{R}</tex> | |
− | + | <tex>\operatorname{Ker}(\overline{\lambda}\mathcal{I}-\mathcal{A}) = \{0\}</tex> {{TODO|t=почему?}} | |
− | <tex>\ | + | <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex>. |
+ | }} | ||
− | + | Из этого утверждения вытекает следующая теорема: | |
− | |||
− | + | {{Теорема | |
− | {{ Теорема | ||
|statement = Если <tex>\mathcal{A}</tex> {{---}} самосопряженный, то <tex> \sigma (\mathcal{A}) \subset \mathbb{R} </tex>. | |statement = Если <tex>\mathcal{A}</tex> {{---}} самосопряженный, то <tex> \sigma (\mathcal{A}) \subset \mathbb{R} </tex>. | ||
− | |proof = Проверим, что если <tex> Im \lambda \ne 0</tex>, то <tex>\lambda \in \rho(\mathcal{A})</tex>. | + | |proof = Проверим, что если <tex> \operatorname{Im} \lambda \ne 0</tex>, то <tex>\lambda \in \rho(\mathcal{A})</tex>. |
<tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> | <tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> | ||
Строка 72: | Строка 71: | ||
с другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что | с другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что | ||
− | <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} всюду плотно | + | <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} всюду плотно в <tex> \mathcal H </tex>. |
А также, <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} замкнуто. Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex> | А также, <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} замкнуто. Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex> | ||
Строка 108: | Строка 107: | ||
<tex>\langle \mathcal{A}x, x\rangle = \|x\|^2 \langle\mathcal{A}z, z\rangle \le m_+ \|x\|^2</tex> | <tex>\langle \mathcal{A}x, x\rangle = \|x\|^2 \langle\mathcal{A}z, z\rangle \le m_+ \|x\|^2</tex> | ||
− | Аналогично | + | Аналогично, <tex> \langle\mathcal{A}z, z\rangle \ge m_- \|x\|^2 </tex> |
{{Теорема | {{Теорема | ||
− | |statement= | + | |statement= |
− | + | Пусть <tex>A</tex> — самосопряженный оператор. Тогда: | |
− | + | # <tex>\sigma(\mathcal{A}) \subset [m_-; m_+]</tex> | |
− | |proof='''Пункт 1.''' Докажем, что из того, что <tex>\lambda > m_+</tex> следует, что <tex>\lambda \in \rho(\mathcal{A})</tex>. Аналогично докажем для <tex>m_-</tex> | + | # <tex>m_+, m_- \in \sigma(\mathcal{A})</tex> |
+ | |proof= | ||
+ | '''Пункт 1.''' Докажем, что из того, что <tex>\lambda > m_+</tex> следует, что <tex>\lambda \in \rho(\mathcal{A})</tex>. Аналогично докажем для <tex>m_-</tex> | ||
Нужно проверять только <tex>\lambda \in \mathbb{R}</tex> | Нужно проверять только <tex>\lambda \in \mathbb{R}</tex> | ||
Строка 136: | Строка 137: | ||
<tex>\mathcal{L} = m_+\mathcal{I} - \mathcal{A}</tex>, <tex>\mathcal{L}=\mathcal{L}^*</tex> | <tex>\mathcal{L} = m_+\mathcal{I} - \mathcal{A}</tex>, <tex>\mathcal{L}=\mathcal{L}^*</tex> | ||
− | + | Далее будем использовать обозначение <tex>[x, y] = \langle \mathcal{L}x, y\rangle</tex>. | |
− | |||
− | |||
Так как <tex>\langle \mathcal{L}x, x \rangle \ge 0</tex>, мгновенно проверяем, что <tex>[\_, \_]</tex> удовлетворяет аксиомам скалярного произведения, а значит, для <tex>[\_, \_]</tex> выполняется неравенство Шварца: | Так как <tex>\langle \mathcal{L}x, x \rangle \ge 0</tex>, мгновенно проверяем, что <tex>[\_, \_]</tex> удовлетворяет аксиомам скалярного произведения, а значит, для <tex>[\_, \_]</tex> выполняется неравенство Шварца: |
Версия 23:19, 9 июня 2013
TODO: Как обычно, это переписанный с выключенным мозгом конспект. Автор не несёт(пока) ответственности за то, что в статье написан антинаучный бред. Хуже того, чукча не читатель, чукча писатель, и написанное даже не читалось.
В параграфе для операторов используется курсивный шрифт (
, ), а для матриц — прямой ( , ). Во-первых, для того, чтобы различать их, а во-вторых, для красоты. Грустно, что тебе, читатель этого, срать на то, написано ли или , а хочется только сдать экзамен.
TODO: Расставить точки в конце предложений, а то режет глаз.
В этом параграфе будем иметь дело с Гильбертовым пространством
, но над полем .- (над ):
- (над ):
В конечномерном пространстве
( ) скалярное произведение двух векторов определялось как .В
( ) же, .Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения:
: .Нас будут интересовать только линейные ограниченные операторы
.
Определение: |
Оператор | называется самосопряжённым ( ), если .
Посмотрим, что же такое самосопряжённость для конечномерного оператора в . В линейный оператор представляет из себя матрицу .
Утверждение: |
Оператор самосопряжён |
. |
, , так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю.
Рассмотрим
, .[ , — самосопряжённый ]
Итого:
.
Утверждение: |
Если —самосопряжённый, а , то |
Доказательство разбивается на два случая: и
TODO: почему? . |
Из этого утверждения вытекает следующая теорема:
Теорема: |
Если — самосопряженный, то . |
Доказательство: |
Проверим, что если , то . , ,, с другой стороны, неравенство даёт априорную оценку , откуда следует, что — всюду плотно в .А также, — замкнуто. Значит, — биективен на . гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, |
Теорема: |
Пусть — самосопряжённый оператор. Тогда
1. 2. |
Доказательство: |
Замечание: второе свойство означает, что спектр самосопряжённого оператора состоит из почти собственных чисел Докажем первый пункт 1. . Требуемое неравенство— непрерывность резольвентного оператора2. — в силу прошлой теоремы.Второй пункт — проверить самим. Это просто логическое отрицание первого. TODO: запилите кто-нибудь |
Выше мы убедились, что
Определение: |
Очевидно, что
, где :
Аналогично,
Теорема: |
Пусть — самосопряженный оператор. Тогда:
|
Доказательство: |
Пункт 1. Докажем, что из того, что следует, что . Аналогично докажем дляНужно проверять только Пусть . Проверим, что выполняется критерий вхождения в из предыдущей теоремы[неравенство Шварца] Итого: Пункт 2. Докажем, что Проверим критерий принадлежности спектру из предыдущей теоремы.
По определению подбираются ,
, Далее будем использовать обозначение .Так как , мгновенно проверяем, что удовлетворяет аксиомам скалярного произведения, а значит, для выполняется неравенство Шварца:
Надо:
Подставим , :, , |
Утверждение: |
Если — самосопряжённый оператор, то |
Ранее мы доказывали, что Если проверить, что , то, по предыдущему утверждению, теорема будет верна:Очевидно, достаточно проверить это утверждение только для . Остальное получится автоматически.
По самосопряжённости: [по неравенству Шварца] [ ] Итого: . Осталось доказать обратное неравенство. |
Если
— компактный, то состоит только из счётного числа собственных чисел . Обозначим за собственные подпространства. В силу самосопряжённости, .Собственные подпространства конечномерны (
). Можно считать, что в каждом из них определён ортонормированный базис.Теорема (Гильберт, Шмидт): |
Если — самосопряжённый оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
Доказательство: |
Обозначим за , — ортогональное дополнение до ( ).Нужно проверить, что Элементарно проверяется, что :Проверим, что : любому, , Значит, Рассмотрим — гильбертово пространство, — самосопряжённое, Но все собственные числа Если бы у задействованы в оператор тривиальный было нетривиальное ядро, то оно стало бы собственным подпространосвом, значит, было бы задействовано в . Значит, |
Если
— самосопряжённый компактный оператор, то ОНС базис можно построить из собственных векторов, соответствующим собственным числам . Любой можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит,
Получаем структуру сопряжённого компактного оператора:
( непрерывно обратим) ,
Можно приравнять коэффициенты:
(нуля быть не может, потому что )