Теорема Хана-Банаха — различия между версиями
(добавил формулировку, которую юзаем, но которой у нас не было) |
|||
| Строка 25: | Строка 25: | ||
{{Теорема | {{Теорема | ||
| + | |id= | ||
| + | hbnorm | ||
|author= | |author= | ||
Хан, Банах | Хан, Банах | ||
Версия 16:43, 10 июня 2013
Линейный функциональный анализ базируется на трех китах(теоремах):
- теорема Хана-Банаха о продолжении линейного функционала;
- теорема Банаха об обратном операторе;
- теорема Штейнгауза о равномерной ограниченности.
Ранее мы установили, что если на линейном всюду плотном множестве определен линейный функционал, то можно продолжить его на все множество. В теореме Хана-Банаха мы отбросим условие всюду плотности.
| Определение: |
| Пусть — линейное пространство. Функционал подчинен полунорме на , если |
| Теорема (Хан, Банах): |
Пусть — линейное пространство, — полунорма на нем, — линейное подмножество , удовлетворяет условию подчиненности .
Тогда существует линейный функционал такой, что: |
| Теорема (Хан, Банах, случай нормированных пространств): |
Пусть — линейное нормированное пространство, — линейное подмножество , — линейный ограниченный функционал.
Тогда существует линейный ограниченный функционал такой, что , . |
| Доказательство: |
| Доказательство есть в Люстренике, Соболеве, глава про линейные функционалы, раздел про теорему Хана-Банаха в ЛНП |
Мы не будем доказывать теорему в таком виде, вместо этого докажем ее частный случай:
| Теорема (Хан, Банах): |
Пусть — сепарабельное нормированное пространство, — линейное подмножество , — линейный ограниченный функционал.
Тогда существует линейный ограниченный функционал такой, что , . |
| Доказательство: |
|
Доказательство разбиваем на две части. 1 Рассмотрим , — линейное подпространство , . Продолжим с сохранением нормы на . Пусть — искомый линейный функционал.
Идея: мы рассматриваем множество и пополняем его до линейной оболочки . По линейности, для того, чтобы можно было считать на , нужно доопределить его всего в одной точке. Например, в : . Пусть , подберем так, чтобы нормы и совпадали. В силу ограниченности , , мы хотим найти такое , чтобы выполнялось , где . Заметим, что является полунормой. Добьемся того, чтобы , из этого будет следовать, что , так как при продолжении функционала его норма уменьшиться не может. распишем модуль: поделим на
Проверим, что . Для этого достаточно, чтобы выполнялось : - верно, так как: . Значит, можно взять любое из отрезка , а значение на позволяет доопределить значение функционала на всем по линейности. 2 Так как мы рассматриваем сепарабельное НП, то существует последовательность , замыкание линейной оболочки которой совпадает со всем пространством . Пользуясь пунктом 1, мы можем выстроить последовательность линейных подпространств в , Тогда , и , требуемый функционал можно продолжить по непрерывности. |
| Утверждение: |
Пусть - нормированное пространство. Тогда . |
|
— линейное подмножество в . - линейный функционал в . Очевидно, удовлетворяет необходимым условиям. Пользуясь только что доказанной теоремой, продолжаем на все . |
| Утверждение: |
Пусть - нормированное пространство, — линейно независимый набор в .
Тогда в существует биортогональная система функционалов |
|
Пусть , возьмем . Тогда для , . Ясно, что все - ограниченные линейные функционалы на , удовлетворяющие нашим условиям. Теперь просто продолжаем каждый из них на все по теореме Хана-Банаха. |