Альтернатива Фредгольма — Шаудера — различия между версиями
| Строка 174: | Строка 174: | ||
То что было в скобке обозначим за <tex>t</tex>. | То что было в скобке обозначим за <tex>t</tex>. | ||
Тогда <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - t =\lambda_{n+p}(y_{n+p} - \frac{t}{\lambda_{n+p}})</tex> | Тогда <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - t =\lambda_{n+p}(y_{n+p} - \frac{t}{\lambda_{n+p}})</tex> | ||
| − | Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - \frac{t}{\lambda_{n+p}}|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен. | + | Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - \frac{t}{\lambda_{n+p}}\|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен. |
Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. | Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. | ||
Версия 18:29, 11 июня 2013
Пусть , непрерывна на .
.
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма: в .
Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть — -пространство, , — компактный.
Ставим задачу: дано, когда разрешимо относительно ?
— операторные уравнения второго рода (явно выделен ). Уравнения первого рода () решаются гораздо сложней. Объясняется это достаточно просто: . Если , то, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Будем считать
| Утверждение: |
— компактный оператор. Тогда |
|
, таким образом, ядро — неподвижные точки . Пусть — единичный шар, — подпространство . Допустим, что . Так как — компактный, — компакт в , но в бесконечномерном пространстве шар ( будет шаром в подпространстве ) не может быть компактом, получаем противоречие. Значит, если — компактный, то . |
| Теорема: |
Пусть , компактен, тогда замкнуто. |
| Доказательство: |
|
Ранее мы доказали, что если уравнение допускает априорную оценку (), то замкнуто. Нужно доказать, что у есть априорная оценка. Пусть . Тогда . Значит, все решения уравнения записываются в форме , где — одно из решений, принадлежит . Но . Рассмотрим функцию от переменных . Эта функция — не что иное, как наилучшее приближение элементами конечномерного , теорема о наилучшем приближении гарантирует нам, что существуют . , среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через . Допустим, априорной оценки не существует, тогда можно построить последовательность и (минимальных по норме решений с правой частью ), таких, что . В силу линейности уравнения, можно выбрать с единичной нормой, тогда . , так как ограничено и компактен, то из можно выделить сходящуюся подпоследовательность . Тогда получаем . Но , значит, . То есть, . , но, так как мы выбирали минимальное по норме , то Получили, что — противоречие, значит, априорная оценка существует, замкнуто, и теорема доказана. |
Докажем теперь два утверждения.
| Утверждение: |
Пусть , — компактный оператор.
Тогда . |
|
Идея доказательства подобных утверждений следующая: идем от противного и, пользуясь леммой Рисса, строим ограниченную последовательность точек. Применяя к ней , получаем последовательность, из которой можно выделить сходящуюся подпоследовательность. После этого ищем противоречие с условием.
Второе слагаемое является компактным оператором, обозначим его за , . , тогда . Пусть , и , тогда , то есть, . Допустим, что (строго). — подпространство . Применим к паре подпространств лемму Рисса:
Таким образом выстраиваем последовательность . , из можно выделить сходящуюся подпоследовательность. . Обозначим сумму в скобках за . Заметим, что . . Здесь первое слагаемое равно нулю по определению последовательности . Второе же, так как операторы и коммутируют, равно , и . Но раз , то , и , чего не может быть, поскольку в этом случае мы не сможем выделить из сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана. |
| Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
|
: Пусть существует . Так как , то у уравнения существует решение, обозначим его . , то есть, . Заметим, что , в противном случае , что противоречит нашему предположению. Значит, (строго). Действуя аналогично, берем решение уравнения — , . Получаем бесконечную цепочку строго вложенных множеств , существование которой противоречит предыдущему утверждению, значит, . : Пусть . — замкнутое множество, , . Тогда , и . |
Альтернатива Фредгольма-Шаудера
| Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
| Доказательство: |
|
Теорема о счетности спектра компактного оператора
Рассмотрим .
- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
| Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
| Доказательство: |
|
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные векторы . Покажем, что при любом , собственные векторы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое. Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек. Составим разность . Проверим, что то, что находится в скобке, принадлежит . . . , . Подействуем A: . Разность . и, следовательно, принадлежит .
|