Тензор — различия между версиями
Slavian (обсуждение | вклад) (→Свертка тензора) |
Slavian (обсуждение | вклад) (→Свертка тензора) |
||
Строка 35: | Строка 35: | ||
|id= | |id= | ||
|neat = 1 | |neat = 1 | ||
− | |definition=Пусть <tex>U \in \boldsymbol{\Omega}_{q}^p </tex>. Сверткой формы <tex>U</tex> по аргументам <tex>x_i</tex>, <tex>y^j</tex> называется <tex> \displaystyle \sum_{s=1}^n U(x_1, x_2, ..., x_{i - 1}, e_s, x_{i + 1}, ... x_{p}; y^1, y^2, ..., y^{j - 1}, f^s, y^{j + 1}, y^q)</tex> = <tex>W(x_1, x_2, ..., x_{i - 1}, x_{i + 1}, ... x_{p}; y^1, y^2, ..., y^{j - 1}, y^{j + 1}, y^q) </tex>. | + | |definition=Пусть <tex dpi = "160">U \in \boldsymbol{\Omega}_{q}^p </tex>. Сверткой формы <tex dpi = "160">U</tex> по аргументам <tex dpi = "160">x_i</tex>, <tex dpi = "160">y^j</tex> называется <tex dpi = "160"> \displaystyle \sum_{s=1}^n U(x_1, x_2, ..., x_{i - 1}, e_s, x_{i + 1}, ... x_{p}; y^1, y^2, ..., y^{j - 1}, f^s, y^{j + 1}, y^q)</tex> = <tex dpi = "160">W(x_1, x_2, ..., x_{i - 1}, x_{i + 1}, ... x_{p}; y^1, y^2, ..., y^{j - 1}, y^{j + 1}, y^q) </tex>. |
}} | }} | ||
Версия 20:48, 14 июня 2013
Тензоры: независимое от ПЛФ определение; свертка тензора; транспонирование тензора.
Пусть
. .(1) {
} { } под действием матрицы .(2) {
} { } под действием матрицы .= =
C учетом того, что
= . И аналогично с взволнованными.
Определение:
Пусть
— базис Х. — базис . Им соответствует чисел . Эти чисел + закон преобразования называются тензором. раз контрвариантный, p раз ковариантный.
— ранг тензора ( , ).
Примеры:
- x . (1, 0)
.
- f . (0, 1)
- : . (1, 1)
- Биленейная форма: . (0, 2).
- (0, 0) — скаляр, число.
— линейное пространство всех форм валентности (p, q).
. Ранг (q, p).
Свертка тензора
Определение:
Пусть
. Сверткой формы по аргументам , называется = .
Лемма: |
Свертка ПЛФ не зависит от пары сопряженных базисов. |
Доказательство: |
Определение: |
Пусть | - тензор ранга (q,p). Сверткой называется тензор ранга (q-1,p-1) вида:
NB Сворачивать тензор можно только по паре один верхний/один нижний значек. А по паре , где 2 верхних(нижних) - нельзя.
Лемма: |
. |
NB Если тензор ранга (p, p), то р - кратная свертка этого тензора называется его полной сверткой. Всего возможно р! полных сверток.
Транспонирование тензора
Определение: |
Пусть дана многомерная матрица | . Двумерным слоем этой матрицы (соответствующей индексам i1, i2 например) называется обычная квадратная матрица, полученная из исходной фиксированием всех индексов кроме i1, i2.
Всего количество двумерных слоев —
— p-мерная матрциа.
Определение: |
матрицей | транспонированной, например, по индексам i1, i2, называется матрица полученная из исходной, обычным транспонированием всех её двумерных слоев, отвечающих этим двум индексам (в нашем случае i1, i2).
Теорема: |
Пусть - тензор ранга (q,p). Пусть каждому базису соответствует . Тогда - тензор ранга (q,p) |
Доказательство: |