Алгоритм двух китайцев — различия между версиями
(→Реализация) |
(→Реализация) |
||
Строка 102: | Строка 102: | ||
newComponents = Сondensation(zeroEdges) | newComponents = Сondensation(zeroEdges) | ||
edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах | edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах | ||
− | for each <tex>e \in</tex> | + | for each <tex>e \in</tex> edges |
if e.to и e.from в разных компонентах | if e.to и e.from в разных компонентах | ||
добавляем в newEdges ребро с концами в данных компонентах и весом e.w | добавляем в newEdges ребро с концами в данных компонентах и весом e.w |
Версия 05:53, 17 августа 2013
Алгоритм двух китайцев — алгоритм построения минимального остовного дерева во взвешенном ориентированном графе с корнем в заданной вершине. Был разработан математиками Чу Йонджином и Лю Цзенхонгом.
Содержание
Постановка задачи
Дан взвешенный ориентированный граф
и начальная вершина . Требуется построить корневое остовное дерево в с корнем в вершине , сумма весов всех ребер которого минимальна.Алгоритм
Описание
Если хотя бы одна вершина графа
недостижима из , то требуемое дерево построить нельзя.
|
Пример
Корректность
Замечания:
- После перевзвешивания в каждую вершину кроме
- Пусть
Лемма: |
Кратчайшее дерево путей в графе можно получить, найдя кратчайшее дерево путей в графе , а затем заменив в нем каждую компоненту сильной связности деревом, построенным из дуг нулевой длинны. |
Доказательство: |
Зафиксируем любое дерево путей и покажем, что в графе | найдется дерево не большей длины, имеющее такую структуру, как сказано в лемме. Для такой структуры дерева необходимо и достаточно, чтобы в каждое из подмножеств входило только по одному ребру. Меньше быть не может, иначе получится отдельная компонента связности. Если же в какое-то подмножество входит больше чем одно ребро, то все ребра кроме одного можно заменить ребрами нулевой длины, лежащими внутри подмножества, что разве лишь уменьшит длину дерева и не нарушит связности. Повторяя это преобразование нужное число раз мы добьемся искомой структуры дерева.
Из сделанных замечаний и леммы следует, что дерево
— MST в .Реализация
Обозначения:
- Граф хранится в виде множества ребер + индекс корня.
- Множество ребер - список смежности.
- Ребро - структура {from, to, weight}.
- root - текущий корень.
Особенность реализации: алгоритму не важна кратность ребер, поэтому при составлении нового графа кратные ребра могут появиться - это уменьшает асимптотику с
доПроверяем, можно ли дойти издо остальных вершин. Если можно - запускаем findMST. int findMST(edges, n, root): int res = 0 int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью. for each minEdge[e.to] = min(e.w, minEdge[e.to]) for each res += minEdge[v] //веса минимальных ребер точно будут в результате edge zeroEdges[] //создаем массив нулевых ребер for each if e.w == minEdge[e.to] zeroEdges.pushback( ) // - ребро е, уменьшенное на минимальный вес, входящий в e.to if dfs(root, zeroEdges) // проверяем, можно ли дойти до всех вершин по нулевым ребрам return res int newComponents[n] // будущие компоненты связности newComponents = Сondensation(zeroEdges) edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах for each edges if e.to и e.from в разных компонентах добавляем в newEdges ребро с концами в данных компонентах и весом e.w res += findMST(newEdges, ComponentsCount, newComponents[root]) return res
Сложность
Всего будет построено не более
конденсаций. Конденсацию можно построить за . Значит, алгоритм можно реализовать за .Источники
- Романовский И. В. Дискретный анализ, 3-е изд., перераб. и доп. - СПб.:Невский Диалект; БХВ-Петербург, 2003. - 320 с.: ил. - ISBN 5-7940-0114-3
- http://is.ifmo.ru