Количество помеченных деревьв — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 9: Строка 9:
 
{{Теорема
 
{{Теорема
 
|author=Формула Кэли;
 
|author=Формула Кэли;
|statement=Число помеченных деревьев порядка <math>n</math> равно <math>n^{n - 2}</math>.
+
|statement=Число помеченных деревьев порядка <tex>n</tex> равно <tex>n^{n - 2}</tex>.
 
|proof=
 
|proof=
''Доказательство 1.'' С помощью [[кодов Прюфера|Коды Прюфера]].
+
''Доказательство 1.'' С помощью [[Коды Прюфера|кодов Прюфера]].
''Доказательство 2.'' С помощью матрицы Кирхгофа для полного графа на <math>n</math> на вершинах.
+
''Доказательство 2.'' С помощью матрицы Кирхгофа для полного графа на <tex>n</tex> на вершинах.
 
}}
 
}}

Версия 21:41, 8 октября 2010

Помеченное дерево.

Определение:
Помеченное дерево порядка n - дерево порядка [math]n[/math], вершинам которого взаимно однозначно соответствуют числа от 1 до n.


Количество помеченных деревьев.

Теорема (Формула Кэли;):
Число помеченных деревьев порядка [math]n[/math] равно [math]n^{n - 2}[/math].
Доказательство:
[math]\triangleright[/math]

Доказательство 1. С помощью кодов Прюфера.

Доказательство 2. С помощью матрицы Кирхгофа для полного графа на [math]n[/math] на вершинах.
[math]\triangleleft[/math]