Регулярные языки: два определения и их эквивалентность — различия между версиями
Gromak (обсуждение | вклад) |
Gromak (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Регулярные языки: два определения и их эквивалентность == | == Регулярные языки: два определения и их эквивалентность == | ||
{{Определение | {{Определение | ||
− | |id = | + | |id = REG1 |
|definition = | |definition = | ||
− | '''Множество регулярных языков''' <tex>\mathrm{ | + | '''Множество регулярных языков''' <tex>\mathrm{REG}</tex> над алфавитом <tex> \Sigma = \left\{c_1, c_2, \ldots, c_k \right\} </tex> {{---}} множество, которое может быть получено из языков, каждый из которых содержит единственное слово {{---}} <tex>c_i</tex> или <tex>\varepsilon</tex>, и пустого языка при помощи последовательных применений операций объединения, конкатенации или замыкания Клини и никаких других, то есть: |
* Определим регулярные языки нулевого уровня как <tex> \mathrm{R_0}=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\} , \ldots, \left\{c_k \right\} \right\} </tex>. | * Определим регулярные языки нулевого уровня как <tex> \mathrm{R_0}=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\} , \ldots, \left\{c_k \right\} \right\} </tex>. | ||
* Регулярные языки ненулевого уровня определим рекуррентным соотношением: <tex> \mathrm{R_{i+1}} = \mathrm{R_i} \cup \left\{L_1 \cup L_2, L_1L_2, L_1^* | L_1, L_2 \in \mathrm{R_i}\right\} </tex>. | * Регулярные языки ненулевого уровня определим рекуррентным соотношением: <tex> \mathrm{R_{i+1}} = \mathrm{R_i} \cup \left\{L_1 \cup L_2, L_1L_2, L_1^* | L_1, L_2 \in \mathrm{R_i}\right\} </tex>. | ||
− | * Тогда <tex>\mathrm{ | + | * Тогда <tex>\mathrm{REG} = \bigcup\limits_{i=0}^{\infty}\mathrm{R_i}</tex>. |
}} | }} | ||
Строка 27: | Строка 27: | ||
{{Определение | {{Определение | ||
− | |id = | + | |id = REG2 |
|definition = | |definition = | ||
Пусть задан алфавит <tex> \Sigma = \left\{c_1, c_2, \ldots ,c_k \right\} </tex>. | Пусть задан алфавит <tex> \Sigma = \left\{c_1, c_2, \ldots ,c_k \right\} </tex>. | ||
Строка 34: | Строка 34: | ||
#<tex>\mathrm{R_0} \subset \mathrm{R}</tex>, где <tex>\mathrm{R_0}=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\}, \ldots, \left\{c_k \right\} \right\}</tex>, | #<tex>\mathrm{R_0} \subset \mathrm{R}</tex>, где <tex>\mathrm{R_0}=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\}, \ldots, \left\{c_k \right\} \right\}</tex>, | ||
#<tex> L_1, L_2 \in \mathrm{R} \Rightarrow L_1 \cup L_2 \in \mathrm{R}, L_1L_2 \in \mathrm{R}, L_1^* \in \mathrm{R}</tex>. | #<tex> L_1, L_2 \in \mathrm{R} \Rightarrow L_1 \cup L_2 \in \mathrm{R}, L_1L_2 \in \mathrm{R}, L_1^* \in \mathrm{R}</tex>. | ||
− | |||
− | Тогда '''множеством регулярных языков''' <tex> \mathrm{ | + | Тогда '''множеством регулярных языков''' <tex> \mathrm{REG'} </tex> над алфавитом <tex> \Sigma = \left\{c_1, c_2, ... ,c_k \right\} </tex> называется пересечение всех надрегулярных множеств. |
}} | }} | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | + | Классы языков [[#REG1 | <tex>\mathrm{REG}</tex>]] и [[#REG2 | <tex>\mathrm{REG'}</tex>]] над одинаковым алфавитом совпадают. | |
|proof= | |proof= | ||
− | Докажем, что <tex>\mathrm{ | + | Докажем, что <tex>\mathrm{REG} \subseteq \mathrm{REG'}</tex> и <tex>\mathrm{REG'} \subseteq \mathrm{REG}</tex>. |
− | *'''<tex>\mathrm{ | + | *'''<tex>\mathrm{REG} \subseteq \mathrm{REG'}</tex>''' |
− | По определению <tex>\mathrm{ | + | По определению <tex>\mathrm{REG} = \bigcup\limits_{i=0}^{\infty}\mathrm{R_i}</tex>. Покажем, что <tex>\bigcup\limits_{i=0}^{\infty}\mathrm{R_i} \subseteq \mathrm{R}</tex>, где <tex>\mathrm{R}</tex> {{---}} любое надрегулярное множество. Для этого докажем по индукции по <tex>i</tex>, что <tex>\mathrm{R_i} \subseteq \mathrm{R}</tex> для любого <tex>i</tex>. |
# База: <tex>i = 0</tex>. | # База: <tex>i = 0</tex>. | ||
#: <tex>\mathrm{R_0} \subseteq \mathrm{R}</tex> по определению надрегулярного множества. | #: <tex>\mathrm{R_0} \subseteq \mathrm{R}</tex> по определению надрегулярного множества. | ||
# Переход: известно, что <tex>\mathrm{R_i} \subseteq \mathrm{R}</tex>, докажем, что <tex>\mathrm{R_{i + 1}} \subseteq \mathrm{R}</tex>. | # Переход: известно, что <tex>\mathrm{R_i} \subseteq \mathrm{R}</tex>, докажем, что <tex>\mathrm{R_{i + 1}} \subseteq \mathrm{R}</tex>. | ||
#: По определению надрегулярного множества для любых <tex>L_1, L_2 \in \mathrm{R_i} \subseteq \mathrm{R}</tex> верны утверждения: <tex>L_1 \cup L_2 \in \mathrm{R}, L_1L_2 \in \mathrm{R}, L_1^* \in \mathrm{R}</tex>. То есть: <tex>\left\{L_1 \cup L_2, L_1L_2, L_1^* | L_1, L_2 \in \mathrm{R_i}\right\} \subseteq \mathrm{R}</tex>. Вспоминая [[#Reg1 | определение]] <tex>\mathrm{R_{i + 1}}</tex> и предположение индукции (<tex>\mathrm{R_i} \subseteq \mathrm{R}</tex>), получаем, что <tex>\mathrm{R_{i + 1}} \subseteq \mathrm{R}</tex>. | #: По определению надрегулярного множества для любых <tex>L_1, L_2 \in \mathrm{R_i} \subseteq \mathrm{R}</tex> верны утверждения: <tex>L_1 \cup L_2 \in \mathrm{R}, L_1L_2 \in \mathrm{R}, L_1^* \in \mathrm{R}</tex>. То есть: <tex>\left\{L_1 \cup L_2, L_1L_2, L_1^* | L_1, L_2 \in \mathrm{R_i}\right\} \subseteq \mathrm{R}</tex>. Вспоминая [[#Reg1 | определение]] <tex>\mathrm{R_{i + 1}}</tex> и предположение индукции (<tex>\mathrm{R_i} \subseteq \mathrm{R}</tex>), получаем, что <tex>\mathrm{R_{i + 1}} \subseteq \mathrm{R}</tex>. | ||
− | Так как <tex>\mathrm{ | + | Так как <tex>\mathrm{REG} \subseteq R</tex> для любого надрегулярного множества <tex>R</tex>, получаем, что <tex> \mathrm{REG} \subseteq \mathrm{REG'} </tex>. |
− | *'''<tex> \mathrm{ | + | *'''<tex> \mathrm{REG'} \subseteq \mathrm{REG} </tex>''' |
− | Докажем, что <tex> \mathrm{ | + | Докажем, что <tex> \mathrm{REG} </tex> является надрегулярным множеством. Для этого проверим, выполняются ли свойства надрегулярного множества на нём: |
− | # <tex> \mathrm{R_0}\subseteq \mathrm{ | + | # <tex> \mathrm{R_0}\subseteq \mathrm{REG} </tex> {{---}} выполнено (по определению <tex> \mathrm{REG} </tex>). |
− | # Рассмотрим <tex> L_1, L_2 \in \mathrm{ | + | # Рассмотрим <tex> L_1, L_2 \in \mathrm{REG} </tex>. Так как <tex> \mathrm{REG} = \bigcup\limits_{i=0}^{\infty}\mathrm{R_i}</tex>, то найдутся такие индексы <tex>i</tex> и <tex>j</tex>, что <tex>L_1 \in \mathrm{R_i}</tex> и <tex>L_2 \in \mathrm{R_j}</tex>. Тогда из определения <tex> \mathrm{REG} </tex> следует, что <tex> L_1L_2 \in \mathrm{R_{max(i, j) + 1}}, L_1 \cup L_2\in \mathrm{R_{max(i, j) + 1}}, L_1^* \in \mathrm{R_{i + 1}}</tex>. Так как <tex> \mathrm{REG} = \bigcup\limits_{i=0}^{\infty}R_i</tex>, то получаем, что <tex> L_1L_2 \in \mathrm{REG}, L_1 \cup L_2\in \mathrm{REG}, L_1^* \in \mathrm{REG} </tex>. Следовательно, второе свойство также выполнено. |
− | Значит, <tex> \mathrm{ | + | Значит, <tex> \mathrm{REG} </tex> {{---}} надрегулярное множество. А так как <tex> \mathrm{REG'}</tex> является пересечением всех надрегулярных множеств, то <tex> \mathrm{REG'} \subseteq \mathrm{REG} </tex>. |
}} | }} | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Автоматы и регулярные языки]] | [[Категория: Автоматы и регулярные языки]] |
Версия 11:58, 21 октября 2013
Регулярные языки: два определения и их эквивалентность
Определение: |
Множество регулярных языков
| над алфавитом — множество, которое может быть получено из языков, каждый из которых содержит единственное слово — или , и пустого языка при помощи последовательных применений операций объединения, конкатенации или замыкания Клини и никаких других, то есть:
Определение: |
Регулярное выражение над алфавитом
| — способ порождения языка над . Определяется рекурсивно следующим образом:
Утверждение: |
По построению очевидно, что множество языков, порождаемых регулярными выражениями, совпадает со множеством регулярных языков. |
Определение: |
Пусть задан алфавит Множество будем называть надрегулярным, если:
| .
Теорема: |
Доказательство: |
Докажем, что и .По определению . Покажем, что , где — любое надрегулярное множество. Для этого докажем по индукции по , что для любого .
Так как для любого надрегулярного множества , получаем, что .Докажем, что является надрегулярным множеством. Для этого проверим, выполняются ли свойства надрегулярного множества на нём:
|