Хроматический многочлен планарного графа — различия между версиями
Martoon (обсуждение | вклад) |
Martoon (обсуждение | вклад) м |
||
Строка 12: | Строка 12: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть граф | + | Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 6</tex> |
|proof= | |proof= | ||
Докажем по индукции. | Докажем по индукции. | ||
Строка 27: | Строка 27: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть граф | + | Пусть граф <tex>G</tex> — планарный. Тогда <tex> \chi (G) \le 5</tex> |
|proof= | |proof= | ||
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. | Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. | ||
− | Обозначим за <tex> u </tex> | + | Обозначим за <tex> u </tex> — возвращаемую вершину, <tex> v^{(k)} </tex> — вершина, покрашенная в <tex> k </tex> цвет. |
Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим <tex> u </tex>. | Если среди вершин, смежных <tex> u </tex>, есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим <tex> u </tex>. | ||
Строка 46: | Строка 46: | ||
Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. | Тогда попытаемся таким же образом перекрасить <tex> u </tex> в цвет 2, а смежную ей <tex>w_1^{(2)}</tex> в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. | ||
− | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах | + | Если нет, то получили ещё один цикл <tex> u w_1^{(2)} w_2^{(4)} w_3^{(2)} ... w_{k-1}^{(2)} w_k^{(4)} u </tex>. Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах — <tex> u </tex> и какой-то другой, что невозможно, ведь вершины <tex> v_i </tex> первого цикла и <tex> w_j </tex> второго — разных цветов. В этом случае получаем противоречие. |
}} | }} | ||
Строка 52: | Строка 52: | ||
Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных <tex> u </tex> не исключает того, что все они раскрашены в разные цвета | Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных <tex> u </tex> не исключает того, что все они раскрашены в разные цвета | ||
− | |||
== Источники == | == Источники == |
Версия 17:08, 10 декабря 2013
Введение
Раскраска в 6 цветов
Лемма: |
В любом графе существует вершина степени не больше 5 |
Доказательство: |
Предположим это не так. Для любой вершины следствию из теоремы Эйлера . Пришли к противоречию. | графа верно . Если сложить это неравенство для всех , получим . Но по
Теорема: |
Пусть граф — планарный. Тогда |
Доказательство: |
Докажем по индукции.
Если граф содержит не более 6 вершин, то утверждение очевидно.
Предположим, что для планарного графа с вершинами существует раскраска в 6 цветов. Докажем то же для графа с вершиной.По только что доказанной лемме в Вернём удалённую вершину и покрасим её в цвет, не встречающийся среди смежных ей вершин. Индукционный переход доказан найдётся вершина степени не больше 5. Удалим её; по предположению индукции получившийся граф можно раскрасить в 6 цветов. |
Раскраска в 5 цветов
Теорема: |
Пусть граф — планарный. Тогда |
Доказательство: |
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за — возвращаемую вершину, — вершина, покрашенная в цвет.Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся один свободный цвет, в который мы и покрасим .Иначе, уложим полученный после удаления граф на плоскость и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим 2 необычных варианта, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в есть цикл .Тогда попытаемся таким же образом перекрасить Если нет, то получили ещё один цикл в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. . Но граф планарный, значит два полученных цикла пересекаются по крайней мере в двух вершинах — и какой-то другой, что невозможно, ведь вершины первого цикла и второго — разных цветов. В этом случае получаем противоречие. |
Заметим что нельзя составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных
не исключает того, что все они раскрашены в разные цвета