Декомпозиция Эдмондса-Галлаи — различия между версиями
Строка 9: | Строка 9: | ||
'''Дефицитом'''(англ. ''deficiency'') графа G мы будем называть величину: <br> | '''Дефицитом'''(англ. ''deficiency'') графа G мы будем называть величину: <br> | ||
<tex>\mathrm{def}(G) = |V| - 2\alpha (G)</tex>, <br> | <tex>\mathrm{def}(G) = |V| - 2\alpha (G)</tex>, <br> | ||
− | где <tex>\alpha (G)</tex> - размер [[Теорема о максимальном паросочетании и дополняющих цепях|максимального | + | где <tex>\alpha (G)</tex> - размер [[Теорема о максимальном паросочетании и дополняющих цепях|максимального паросочетания]] в <tex>G</tex>, а <br> |
<tex>V(G)</tex> - множество вершин графа <tex>G</tex> | <tex>V(G)</tex> - множество вершин графа <tex>G</tex> | ||
}} | }} | ||
Строка 54: | Строка 54: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Граф <tex>G</tex> называется ''' | + | Граф <tex>G</tex> называется '''фактор-критическим''' (англ. ''factor-critical graph''), если для любой вершины <tex>v \in G</tex> в графе <tex>G \setminus {v}</tex> существует совершенное паросочетание. |
}} | }} | ||
Версия 20:58, 23 декабря 2013
Ключевые личности: Вильям Томас Татт (William Thomas Tutte), Клауд Берж(Claude Brege), Джек Эдмондс(Jack Edmonds), Тибор Галлаи(Tibor Gallai)
Определение: |
компонент связности нечетного размера в . | - количество
Определение: |
Дефицитом(англ. deficiency) графа G мы будем называть величину:
|
Теорема (Бержа): |
Для любого графа G выполняется: |
Теорема (Татта-Бержа): |
Дан граф , размер максимального паросочетания в нем равен: |
Определение: |
Множество | , для которого , называется барьером.
Определение: |
Пусть | . Множeство соседей (англ. neighbors) определим формулой:
Структурная теорема Эдмондса-Галлаи
Определение: |
Необходимые определения:
|
Определение: |
Граф | называется фактор-критическим (англ. factor-critical graph), если для любой вершины в графе существует совершенное паросочетание.
Теорема (Галлаи): |
- связен и для любой вершины выполняется равенство . |
Лемма (Галлаи, о стабильности (англ. stability lemma)): |
Пусть Тогда:
|
Доказательство: |
Достаточно доказать, что a. Путь b. Путь c. Путь кончается ребром из (см. рисунок) Рассмотрим паросочетание . Тогда , причём . Противоречие с максимальностью паросочетания .
|
Теорема (Галлаи, Эдмондс): |
Пусть G - граф, - компоненты связности графа , . тогда:
|
Доказательство: |
1) Последовательно удаляя вершины множества , по лемме о стабильности мы получим:Это означает, что не существует рёбер, соединяющих вершины из и . Каждое максимальное паросочетание графа покрывает все вершины множества , поэтому содержит совершенное паросочетание графа . Тем самым, мы доказали пункт 1).2) Из формулы следует, что - компоненты связности графа . Для любой вершины существует максимальное паросочетание графа , не содержащее . Так как - компонента связности графа , паросочетание содержит максимальное паросочетание графа (разумеется, не покрывающее вершину ). Следовательно, и по теореме Галлаи(выше) мы получаем, что граф - фактор-критический.3) Пусть 4) Из пункта 3) сразу же следуют оба равенства пункта 4). - максимальное паросочетание графа , а получено из удалением всех рёбер, инцидентных вершинам множества . Тогда и по формуле понятно, что - максимальное паросочетание графа . Более того, из следует , а значит, все вершины множества покрыты в различными рёбрами. Так как - максимальное паросочетание графа , то по пунктам 1) и 2) очевидно, что содержит совершенное паросочетание графа и почти совершенные паросочетания фактор-критических графов . Значит, рёбра паросочетания соединяют вершины с непокрытыми вершинами различных компонент связности из . |
Утверждение (следствие из теоремы): |
- барьер графа |