Квадратичные вычеты — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Определение |definition= Рассмотрим <tex>p\in\mathbb{P}\text{, }p>2</tex>. Если сравнение <tex>x^2\equiv a(mod\text{ }p)</tex> …»)
 
(Символ Лежандра, критерий Эйлера)
Строка 15: Строка 15:
 
|statement=
 
|statement=
 
Пусть <tex>p>2 \text{; }p \in \mathbb{P}</tex>. Число <tex>a</tex>, взаимнопростое с <tex>p</tex>, является квадратичным вычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv 1(mod\text{ }p)</tex>, и является квадратичным невычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv -1(mod\text{ }p)</tex>. То есть <tex>(\frac{a}{p})\equiv a^{\frac{p-1}{2}}(mod\text{ }p)</tex>.
 
Пусть <tex>p>2 \text{; }p \in \mathbb{P}</tex>. Число <tex>a</tex>, взаимнопростое с <tex>p</tex>, является квадратичным вычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv 1(mod\text{ }p)</tex>, и является квадратичным невычетом по модулю <tex>p</tex> тогда и только тогда, когда <tex>a^{\frac{p-1}{2}}\equiv -1(mod\text{ }p)</tex>. То есть <tex>(\frac{a}{p})\equiv a^{\frac{p-1}{2}}(mod\text{ }p)</tex>.
 +
|proof=
 +
Рассмотрим три утверждения:
 +
<br>
 +
(1) <tex>x^2\equiv a (mod~ p)</tex>
 +
<br>
 +
(2) <tex>a^{\frac{p-1}{2}}\equiv 1 (mod~p)</tex>
 +
<br>
 +
(3) <tex>a^{\frac{p-1}{2}}\equiv -1 (mod~p)</tex>
 +
<br>
 +
Сначала докажем, что <tex>a</tex> одновременно удовлетворяет только одному сравнению (2) или (3).
 +
<tex>a^{\phi (p)}=1(mod ~ p)</tex>, отсюда <tex>0=a^{\phi(p)}-1 (mod ~p)=a^{p-1}-1 (mod ~p)= (a^{\frac{p-1}{2}}-1)\cdot(a^{\frac{p-1}{2}}+1) (mod ~ p)</tex>, значит хотя бы один из сомножителей должен делиться на <tex>p</tex>. Но они не могут делиться на <tex>p</tex> одновременно, так как их разность равна <tex>\pm 2</tex>, а <tex>p>2</tex>
 +
<br>
 +
Теперь возведем обе части сравнения (1) в степень <tex>\frac{p-1}{2}</tex>. Получим <tex>x^{p-1}=a^{\frac{p-1}{2}} (mod ~p)</tex>. Но <tex>x^{p-1}=1(mod ~p)</tex>, значит если <tex>a</tex> удовлетворяет сравнению (1), то выполняется и сравнение (2). Рассмотрим последовательность чисел <tex>1,~2,~\dots ,~ p-1</tex>, или, что то же самое, <tex>1,~2,~\dots,~\frac{p-1}{2},~ \frac{p+1}{2}-1,~\dots,~p-1</tex>. Очевидно, что <tex>1^2\equiv (p-1)^2,~ 2^2\equiv (p-2)^2,~\dots (\frac{p-1}{2})^2 \equiv (\frac{p+1}{2})^2</tex> по модулю <tex>p</tex>. Значит существует только <tex>\frac{p-1}{2}</tex> различных квадратов чисел по модулю <tex>p</tex>. Обозначим их <tex>a_1,~a_2,~\dots,~a_{\frac{p-1}{2}}</tex>. Если <tex>a</tex> равно любому <tex>a_i</tex>, то сравнение (1) имеет решение, следовательно сравнение (2) так же выполняется для всех <tex>a_i</tex>. Но сравнение (2) не может иметь более <tex>\frac{p-1}{2}</tex> различных решений, следовательно оно имеет ровно столько решений. Отсюда же следует, что и сравнение (3) имеет ровно <tex>\frac{p-1}{2}</tex> различных решений, и при <tex>a</tex>, равном любому из этих решений, сравнение (1) решений не имеет.
 
}}
 
}}

Версия 05:55, 10 октября 2010

Определение:
Рассмотрим [math]p\in\mathbb{P}\text{, }p\gt 2[/math]. Если сравнение [math]x^2\equiv a(mod\text{ }p)[/math] имеет решения, то число [math]a[/math] называется квадратичным вычетом по модулю [math]p[/math]. Если решения нет, то [math]a[/math] называется квадратичным невычетом по модулю [math]p[/math].

Число квадратичных вычетов по простому модулю

[math]x=1,2,...,p-1[/math]; [math]x^2=1^2,2^2,...,(p-1)^2[/math] — Среди этих квадратов будет [math]\frac{p-1}{2}[/math] различных по модулю [math]p[/math], так как квадраты чисел [math]a[/math], и [math]p-a\equiv -a[/math] равны. Следовательно, количество квадратичных вычетов и невычетов по модулю [math]p[/math] равно [math]\frac{p-1}{2}[/math].

Символ Лежандра, критерий Эйлера

Определение:
[math](\frac{a}{p})[/math] — называется символом Лежандра, если [math](\frac{a}{p})=1[/math], когда [math]a[/math] - квадратичный вычет по модулю [math]p[/math], и [math](\frac{a}{p})=-1[/math], когда [math]a[/math] — квадратичный невычет по модулю [math]p[/math], [math]p\in\mathbb{P}[/math].
Теорема (Критерий Эйлера):
Пусть [math]p\gt 2 \text{; }p \in \mathbb{P}[/math]. Число [math]a[/math], взаимнопростое с [math]p[/math], является квадратичным вычетом по модулю [math]p[/math] тогда и только тогда, когда [math]a^{\frac{p-1}{2}}\equiv 1(mod\text{ }p)[/math], и является квадратичным невычетом по модулю [math]p[/math] тогда и только тогда, когда [math]a^{\frac{p-1}{2}}\equiv -1(mod\text{ }p)[/math]. То есть [math](\frac{a}{p})\equiv a^{\frac{p-1}{2}}(mod\text{ }p)[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим три утверждения:
(1) [math]x^2\equiv a (mod~ p)[/math]
(2) [math]a^{\frac{p-1}{2}}\equiv 1 (mod~p)[/math]
(3) [math]a^{\frac{p-1}{2}}\equiv -1 (mod~p)[/math]
Сначала докажем, что [math]a[/math] одновременно удовлетворяет только одному сравнению (2) или (3). [math]a^{\phi (p)}=1(mod ~ p)[/math], отсюда [math]0=a^{\phi(p)}-1 (mod ~p)=a^{p-1}-1 (mod ~p)= (a^{\frac{p-1}{2}}-1)\cdot(a^{\frac{p-1}{2}}+1) (mod ~ p)[/math], значит хотя бы один из сомножителей должен делиться на [math]p[/math]. Но они не могут делиться на [math]p[/math] одновременно, так как их разность равна [math]\pm 2[/math], а [math]p\gt 2[/math]

Теперь возведем обе части сравнения (1) в степень [math]\frac{p-1}{2}[/math]. Получим [math]x^{p-1}=a^{\frac{p-1}{2}} (mod ~p)[/math]. Но [math]x^{p-1}=1(mod ~p)[/math], значит если [math]a[/math] удовлетворяет сравнению (1), то выполняется и сравнение (2). Рассмотрим последовательность чисел [math]1,~2,~\dots ,~ p-1[/math], или, что то же самое, [math]1,~2,~\dots,~\frac{p-1}{2},~ \frac{p+1}{2}-1,~\dots,~p-1[/math]. Очевидно, что [math]1^2\equiv (p-1)^2,~ 2^2\equiv (p-2)^2,~\dots (\frac{p-1}{2})^2 \equiv (\frac{p+1}{2})^2[/math] по модулю [math]p[/math]. Значит существует только [math]\frac{p-1}{2}[/math] различных квадратов чисел по модулю [math]p[/math]. Обозначим их [math]a_1,~a_2,~\dots,~a_{\frac{p-1}{2}}[/math]. Если [math]a[/math] равно любому [math]a_i[/math], то сравнение (1) имеет решение, следовательно сравнение (2) так же выполняется для всех [math]a_i[/math]. Но сравнение (2) не может иметь более [math]\frac{p-1}{2}[/math] различных решений, следовательно оно имеет ровно столько решений. Отсюда же следует, что и сравнение (3) имеет ровно [math]\frac{p-1}{2}[/math] различных решений, и при [math]a[/math], равном любому из этих решений, сравнение (1) решений не имеет.
[math]\triangleleft[/math]