Декомпозиция Эдмондса-Галлаи — различия между версиями
Slavian (обсуждение | вклад) |
Slavian (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex>\mathrm{odd}(G)</tex> - количество [[Отношение связности, компоненты связности|компонент связности]] нечетного размера в <tex> G</tex>.}} | + | <tex>\mathrm{odd}(G)</tex> - количество [[Отношение связности, компоненты связности#def2|компонент связности]] нечетного размера в <tex> G</tex>.}} |
{{Определение | {{Определение | ||
Строка 54: | Строка 54: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Граф <tex>G</tex> называется '''фактор-критическим''' (англ. ''factor-critical graph''), если для любой вершины <tex>v \in G</tex> в графе <tex>G \setminus {v}</tex> существует [[Теорема Холла|совершенное паросочетание]]. | + | Граф <tex>G</tex> называется '''фактор-критическим''' (англ. ''factor-critical graph''), если для любой вершины <tex>v \in G</tex> в графе <tex>G \setminus {v}</tex> существует [[Теорема Холла#def1|совершенное паросочетание]]. |
}} | }} | ||
Строка 63: | Строка 63: | ||
|statement= | |statement= | ||
<tex>G</tex> - фактор-критический граф <tex> \Leftrightarrow </tex> <br> | <tex>G</tex> - фактор-критический граф <tex> \Leftrightarrow </tex> <br> | ||
− | <tex>G</tex> - связен и для любой вершины<tex> u \in V(G) </tex> выполняется равенство <tex> \alpha (G - u) = \alpha (G)</tex>. | + | <tex>G</tex> - связен и для любой вершины <tex>u \in V(G) </tex> выполняется равенство <tex> \alpha (G - u) = \alpha (G)</tex>. |
}} | }} | ||
Версия 23:24, 28 декабря 2013
В этом направлении много усилий приложили Вильям Томас Татт (William Thomas Tutte), Клауд Берж(Claude Brege), Джек Эдмондс(Jack Edmonds) и Тибор Галлаи(Tibor Gallai).
Определение: |
компонент связности нечетного размера в . | - количество
Определение: |
Дефицитом графа G мы будем называть величину:
|
Теорема (Бержа): |
Для любого графа G выполняется: |
Теорема (Татта-Бержа): |
Дан граф , размер максимального паросочетания в нем равен: |
Определение: |
Множество | , для которого , называется барьером.
Определение: |
Пусть | . Множeство соседей (англ. neighbors) определим формулой:
Структурная теорема Эдмондса-Галлаи
Определение: |
Необходимые определения:
|
Определение: |
Граф совершенное паросочетание. | называется фактор-критическим (англ. factor-critical graph), если для любой вершины в графе существует
Теорема (Галлаи): |
- связен и для любой вершины выполняется равенство . |
Лемма (Галлаи, о стабильности (англ. stability lemma)): |
Пусть Тогда:
|
Доказательство: |
Достаточно доказать, что
Пусть максимальное паросочетание графа , не покрывающее . Поскольку любое максимальное паросочетание графа покрывает a, то и более того, если, для некоторой вершины , , то - максимальное паросочетание графа , не покрывающее . Таким образом, .
Предположим, что существует максимальное паросочетание a. Путь b. Путь c. Путь кончается ребром из (см. рисунок) Рассмотрим паросочетание . Тогда , причём . Противоречие с максимальностью паросочетания .
|
Теорема (Галлаи, Эдмондс): |
Пусть G - граф, - компоненты связности графа , . тогда:
|
Доказательство: |
|
Утверждение (следствие из теоремы): |
- барьер графа |