Жадный алгоритм поиска базы минимального веса — различия между версиями
м |
Sergej (обсуждение | вклад) |
||
Строка 17: | Строка 17: | ||
Алгоритм работает за <tex>O(|X| \log(|X|))</tex>. На сортировку элементов из <tex>X</tex> по возрастанию весов уходит <tex>O(|X| \log(|X|))</tex> и <tex>O(|X|)</tex> шагов цикла, каждый из которых работает <tex>O(1)</tex> времени (если считать, что проверка множества на независимость происходит за <tex>O(1)</tex>). | Алгоритм работает за <tex>O(|X| \log(|X|))</tex>. На сортировку элементов из <tex>X</tex> по возрастанию весов уходит <tex>O(|X| \log(|X|))</tex> и <tex>O(|X|)</tex> шагов цикла, каждый из которых работает <tex>O(1)</tex> времени (если считать, что проверка множества на независимость происходит за <tex>O(1)</tex>). | ||
}} | }} | ||
+ | |||
+ | |||
+ | [[Категория:Алгоритмы и структуры данных]] | ||
+ | [[Категория:Матроиды]] |
Версия 13:24, 2 мая 2014
Теорема (жадный алгоритм поиска базы минимального веса): |
Пусть на носителе матроида задана весовая функция . Для любого выполнено: . Тогда база минимального веса матроида ищется жадно. |
Доказательство: |
Псевдокод алгоритма: // сортируем элементы по возрастанию веса for to do if Рассмотрим шаг алгоритма, когда мы пытаемся добавить элемент . Заметим, что если его можно добавить с сохранением независимости множества , то это элемент минимального веса не из , который можно добавить (при условии сохранения независимости при добавлении). В самом деле, пусть — элемент минимального веса не из , который можно добавить к с сохранением его независимости, тогда . Но тогда он уже был бы добавлен на -ом шаге алгоритма.Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По теореме Радо-Эдмондса множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из так, чтобы после каждого добавления множество оставалось независимым. Алгоритм работает за . На сортировку элементов из по возрастанию весов уходит и шагов цикла, каждый из которых работает времени (если считать, что проверка множества на независимость происходит за ). |