Наивный алгоритм поиска подстроки в строке — различия между версиями
Sergej (обсуждение | вклад) (→Преимущества) |
Sergej (обсуждение | вклад) (→Преимущества) |
||
| Строка 21: | Строка 21: | ||
==Преимущества== | ==Преимущества== | ||
| − | *Если <tex>m</tex> достаточно мало, по сравнению с <tex>n</tex>, то тогда асимптотика получается <tex>O(N)</tex>. Поэтому этот алгоритм активно используется в браузерах (при использовании <tex> \mathrm{Ctrl}+\mathrm{F}</tex>), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня <tex>(\mathrm{C}\texttt{++}, \mathrm {Java})</tex> | + | *Если <tex>m</tex> достаточно мало, по сравнению с <tex>n</tex>, то тогда асимптотика получается <tex>O(N)</tex>. Поэтому этот алгоритм активно используется в браузерах (при использовании <tex> \mathrm{Ctrl}+\mathrm{F}</tex>), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня <tex>(\mathrm{C}\texttt{++}, \mathrm {Java}),</tex> потому что он не требует дополнительной памяти. |
*Требует <tex>O(1)</tex> памяти. | *Требует <tex>O(1)</tex> памяти. | ||
*Простая и понятная реализация. | *Простая и понятная реализация. | ||
Версия 09:05, 6 мая 2014
Постановка задачи
Имеются строки и такие, что и элементы этих строк — символы из конечного алфавита . Говорят, что строка встречается в строке со сдвигом , если и Если строка встречается в строке , то является подстрокой . Требуется проверить, является ли строка подстрокой .
Алгоритм
В наивном алгоритме поиск всех допустимых сдвигов производится с помощью цикла, в котором проверяется условие для каждого из возможных значений .
Псевдокод
Приведем пример псевдокода, который находит все вхождения строки в и возвращает массив позиций, откуда начинаются вхождения.
vector<int> naiveStringMatcher(string t, string p)
int n = t.length
int m = p.length
vector<int> ans
for i = 1 .. n - m + 1:
if t.substring(i..i + m - 1) == p
ans.push_back(i)
return ans
Время работы
Алгоритм работает за . В худшем случае что дает .
Преимущества
- Если достаточно мало, по сравнению с , то тогда асимптотика получается . Поэтому этот алгоритм активно используется в браузерах (при использовании ), потому что обычно паттерн, который нужно найти очень короткий по сравнению с самим текстом. Также наивный алгоритм используется в стандартных библиотеках языков высокого уровня потому что он не требует дополнительной памяти.
- Требует памяти.
- Простая и понятная реализация.
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.