Алгоритм Укконена — различия между версиями
(→Лемма 5.) |
(→Итоговая линейная оценка) |
||
Строка 199: | Строка 199: | ||
Оценим время работы алгоритма при использовании всех вышеперечисленных эвристик. | Оценим время работы алгоритма при использовании всех вышеперечисленных эвристик. | ||
− | Все неявные продления листов суммарно можно выполнить за <tex>O(n)</tex> (по Лемме 1) | + | Все неявные продления листов суммарно можно выполнить за <tex>O(n)</tex> ([[#l1|по Лемме 1]]) |
− | По Лемме 2 алгоритм делает не более <tex>2n</tex> явных продлений. При использовании суффиксных ссылок, как показано в Лемме 5 время на продление равно константе плюс время пропорциональное числу ребер, пройденных при спуске по дереву. Оценим суммарное число таких переходов по ребрам. Первое явное продолжение в любой фазе (кроме первой) начинается с продолжения, которое было последним явным в предыдущей фазе. Поэтому текущаю вершинная глубина не изменяется при переходе к следущей фазе. Как было показано в Лемме 5, каждое продление представляет собой переход не более чем на 2 единицы глубины вверх, а затем несколько переходов вниз, каждый из которых увеличивает глубину на 1. Так как максимальная глубина не превосходит <tex>n</tex>, а количество явных продлений не превышает <tex>2n</tex>, то по рассуждениям аналогичным Лемме 5 суммарное число таких переходов имеет порядок <tex>O(n)</tex> | + | [[#l2|По Лемме 2]] алгоритм делает не более <tex>2n</tex> явных продлений. При использовании суффиксных ссылок, как показано в [[#l5|Лемме 5]] время на продление равно константе плюс время пропорциональное числу ребер, пройденных при спуске по дереву. Оценим суммарное число таких переходов по ребрам. Первое явное продолжение в любой фазе (кроме первой) начинается с продолжения, которое было последним явным в предыдущей фазе. Поэтому текущаю вершинная глубина не изменяется при переходе к следущей фазе. Как было показано в [[#l5|Лемме 5]], каждое продление представляет собой переход не более чем на 2 единицы глубины вверх, а затем несколько переходов вниз, каждый из которых увеличивает глубину на 1. Так как максимальная глубина не превосходит <tex>n</tex>, а количество явных продлений не превышает <tex>2n</tex>, то по рассуждениям аналогичным [[#l5|Лемме 5]] суммарное число таких переходов имеет порядок <tex>O(n)</tex> |
== Источники == | == Источники == |
Версия 00:16, 29 мая 2014
Алгоритм Укконена — алгоритм построения суффиксного дерева для заданной строки за линейное время.
Содержание
Первая версия алгоритма
Рассмотрим сначала метод, который строит дерево за время
, где — длина исходной строки . В дальнейшем данный алгоритм будет оптимизирован таким образом, что будет достигнута линейная скорость работы.Описание
Алгоритм делится на
фаз. В фазе с номером в дерево добавляются все суффиксы подстроки . При добавлении суффикса алгоритм сначала находит конец пути из корня, помеченного подстрокой , затем добавляет к найденной вершине новое ребро с листом , если этот символ не был добавлен ранее.Возможные исходы операции insert
Ниже приведены три возможных случая, которые могут возникнуть при добавлении подстроки
в дерево.Оптимизация алгоритма Укконена
Рассмотрим две леммы, позволяющие ускорить алгоритм Укконена до
Лемма 1. Стал листом — листом и останешься
Лемма: |
Если в какой-то момент работы алгоритма Укконена будет создан лист с меткой (для суффикса, начинающегося в позиции строки ), он останется листом во всех последовательных деревьях, созданных алгоритмом.
|
Доказательство: |
Это верно потому, что у алгоритма нет механизма продолжения листового ребра дальше текущего листа. Если есть лист с суффиксом | , правило продолжения 1 будет применяться для продолжения на всех последующих фазах.
Лемма 2. Правило 3 заканчивает дело
Лемма: |
В любой фазе, если правило продолжения 3 применяется в продолжении , оно будет реализовываться во всех дальнейших продолжениях(от по ) до конца фазы.
|
Доказательство: |
При использовании правила продолжения 3 путь, помеченный | в текущем дереве, должен продолжаться символом , и точно так же продолжается путь, помеченный , поэтому правило 3 применяется в продолжениях
Когда используется правило 3, никакой работы делать не нужно, так как требуемый суффикс уже в дереве есть. Поэтому можно заканчивать каждую фазу после первого же использования правила прохождения 3. Если это случится в продолжении i, то уже не требуется явно находить концы строк с .
Алгоритм Укконена за квадратичное время
Рассмотрим правила продолжения суффиксов.
При использовании правила 1 по лемме 1 в последующих фазах будет выполняться правило 1. Поэтому скажем, что мы создаём лист не только для рассмотренной части строки, а для всей всей строки до конца.
При использовании правила 2 появится новый лист, который далее будет продлеваться по правилу 1.
При использовании правила 3 по лемме 2 никакой работы делать не нужно, поскольку суффикс в дереве уже есть. Следовательно, можно остановиться и не добавлять следующие суффиксы.
Таким образом, операция insert позволяет суффиксы не только для подстрок
, но и сразу для всего суффикса .Суффиксные ссылки
Определение: |
Пусть | обозначает произвольную строку, где — ее первый символ, а — оставшаяся подстрока(возможно пустая). Если для внутренней вершины с путевой меткой существует другая вершина с путевой меткой , то ссылка из в называется суффиксной ссылкой.
Лемма 3. Существование суффиксных ссылок
Лемма: |
Для любой внутренней вершины суффиксного дерева существует суффиксная ссылка, ведущая в некоторую внутреннюю вершину . |
Доказательство: |
Рассмотрим внутренную вершину | с путевой меткой . Так как эта вершина внутренняя, ее путевая метка ветвится справа в исходной строке. Тогда очевидно подстрока тоже ветвится справа в исходной строке, и ей соответствует некоторая внутренняя вершина . По определению суффиксная ссылка вершины ведет в
Построение суффиксных ссылок
Заметим что в процессе построения суффиксного дерева уже построенные суффиксные ссылки никак не изменяются. Опишем процесс построения суффиксной ссылки для новой созданной внутренней вершины. Пусть в результате очередного продления была создана новая внутренняя вершина
с путевой меткой . Перейдем к следущему шагу текущей фазы, на котором в дерево будет добавлен суффикс соответствующий вершине (возможно до продления суффикс оканчивался на ребре, но в этом случае по рассуждениям аналогичным Лемме 1 будет создана новая внутрення вершина). По определению суффиксная ссылка из вершины ведет в .Использование суффиксных ссылок
Опишем как искать концы суффиксов в дереве, которые нужно продлить. Пусть мы только что продлили суффикс
. Найдем с помощью построенных ссылок конец суффикса . Пройдем вверх по дереву от конца суффикса до ближайшей внутренней вершины . Ей соответствует некоторая подстрока . У вершины есть суффиксная ссылка, так как ссылка для новой внутренней вершины строится внутри фазы ее создания. Пусть суффиксная ссылка ведет в вершину , которой соответствует подстрока . Теперь пройдем от вершины пройдем вниз по дереву, читая текст , и придем к концу суффикса .Оценка числа переходов
Определение: |
Глубиной вершины | назовем число ребер на пути от корня до вершины
Лемма 4.
Лемма: |
При переходе по суффиксной ссылке глубина уменьшается не более чем на 1. |
Доказательство: |
Пусть мы переходим из вершины | с путевой меткой по суффиксной ссылке в вершину с путевой меткой Определим множество как множество вершин на пути от корня до , исключая корень. Множество определим как множество вершин на пути от корня до , исключая корень. Если длина первого ребра на пути от корня до равна единице, то выкинем из множества вершину, в которую ведет это ребро. Итого по построению получаем: , . Теперь заметим, что суффиксная ссылка из любой вершины множества ведет в некоторую вершину множества , и очевидно суффиксные ссылки из разных вершин ведут в разные вершины, поэтому , а значит
Лемма 5.
Лемма: |
Число переходов по ребрам внутри фазы номер не превышает |
Доказательство: |
Оценим количество переходов по ребрам при поиске конца суффикса. Переход до ближайшей внутренней вершины уменьшает высоту на 1. Переход по суффиксной ссылке уменьшает высоту не более чем на 1 (по Лемме 4). Значит в течение одной фазы вверх мы переходим не более | раз. Но внутри одной фазы начальная глубина не меньше конечной (так как длины суффиксов убывают до 1), поэтому вниз мы могли пройти не более ребер. Итого получаем оценку
Псевдокод
string s; int n; struct node { int l, r, par, link; map<char,int> next; node (int l=0, int r=0, int par=-1) : l(l), r(r), par(par), link(-1) {} int len() { return r - l; } int &get (char c) { if (!next.count(c)) next[c] = -1; return next[c]; } }; node t[MAXN]; int sz; struct state { int v, pos; state (int v, int pos) : v(v), pos(pos) {} }; state ptr (0, 0); state go (state st, int l, int r) { while (l < r) if (st.pos == t[st.v].len()) { st = state (t[st.v].get( s[l] ), 0); if (st.v == -1) return st; } else { if (s[ t[st.v].l + st.pos ] != s[l]) return state (-1, -1); if (r-l < t[st.v].len() - st.pos) return state (st.v, st.pos + r-l); l += t[st.v].len() - st.pos; st.pos = t[st.v].len(); } return st; } int split (state st) { if (st.pos == t[st.v].len()) return st.v; if (st.pos == 0) return t[st.v].par; node v = t[st.v]; int id = sz++; t[id] = node (v.l, v.l+st.pos, v.par); t[v.par].get( s[v.l] ) = id; t[id].get( s[v.l+st.pos] ) = st.v; t[st.v].par = id; t[st.v].l += st.pos; return id; } int get_link (int v) { if (t[v].link != -1) return t[v].link; if (t[v].par == -1) return 0; int to = get_link (t[v].par); return t[v].link = split (go (state(to,t[to].len()), t[v].l + (t[v].par==0), t[v].r)); } void tree_extend (int pos) { for(;;) { state nptr = go (ptr, pos, pos+1); if (nptr.v != -1) { ptr = nptr; return; } int mid = split (ptr); int leaf = sz++; t[leaf] = node (pos, n, mid); t[mid].get( s[pos] ) = leaf; ptr.v = get_link (mid); ptr.pos = t[ptr.v].len(); if (!mid) break; } } void build_tree() { sz = 1; for (int i=0; i<n; ++i) tree_extend (i); }
Итоговая линейная оценка
Оценим время работы алгоритма при использовании всех вышеперечисленных эвристик.
Все неявные продления листов суммарно можно выполнить за по Лемме 1) По Лемме 2 алгоритм делает не более явных продлений. При использовании суффиксных ссылок, как показано в Лемме 5 время на продление равно константе плюс время пропорциональное числу ребер, пройденных при спуске по дереву. Оценим суммарное число таких переходов по ребрам. Первое явное продолжение в любой фазе (кроме первой) начинается с продолжения, которое было последним явным в предыдущей фазе. Поэтому текущаю вершинная глубина не изменяется при переходе к следущей фазе. Как было показано в Лемме 5, каждое продление представляет собой переход не более чем на 2 единицы глубины вверх, а затем несколько переходов вниз, каждый из которых увеличивает глубину на 1. Так как максимальная глубина не превосходит , а количество явных продлений не превышает , то по рассуждениям аналогичным Лемме 5 суммарное число таких переходов имеет порядок
(Источники
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — 654 с: ил.
- Реализация алгоритма Укконена
- Построение суффиксного дерева: алгоритм Укконена