Мультипликативность функции, свёртка Дирихле — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Мультипликативность функции)
Строка 6: Строка 6:
 
*2. Для любых положительных взаимно простых <tex> a_1 </tex> и <tex> a_2 </tex> имеем <tex> \theta(a_1 a_2) = \theta(a_1)\theta(a_2) </tex>
 
*2. Для любых положительных взаимно простых <tex> a_1 </tex> и <tex> a_2 </tex> имеем <tex> \theta(a_1 a_2) = \theta(a_1)\theta(a_2) </tex>
 
}}
 
}}
 +
=== Свойства мультипликативных функций ===
 +
*1. Из определения следует, что <tex> \theta(1)=1</tex>.
 +
** Действительно, пусть <tex> \theta(a_0) \ne 0</tex>, тогда <tex> \theta(1\cdot a_0) = \theta(1)\theta(a_0)</tex>.
 +
*2. Если <tex> \theta_1(a),\theta_2(a)</tex> {{---}} мультпликативные функции, то <tex> \theta(a) = \theta_1(a)\theta_2(a) </tex> {{---}} тоже мультипликативная.
 +
** <tex> \theta(1) = \theta_1(1)\theta_2(1) = 1</tex> и условия определения выполнены.
  
 
== Свертка Дирихле ==
 
== Свертка Дирихле ==

Версия 03:24, 13 октября 2010

Мультипликативность функции

Определение:
Функция [math] \theta (a) [/math] называется мультипликативной, если выполнены следующие условия:
  • 1. Функция [math] \theta (a) [/math] определена для всех целых положительных a и не обращается в 0 хотя бы при одном таком a
  • 2. Для любых положительных взаимно простых [math] a_1 [/math] и [math] a_2 [/math] имеем [math] \theta(a_1 a_2) = \theta(a_1)\theta(a_2) [/math]

Свойства мультипликативных функций

  • 1. Из определения следует, что [math] \theta(1)=1[/math].
    • Действительно, пусть [math] \theta(a_0) \ne 0[/math], тогда [math] \theta(1\cdot a_0) = \theta(1)\theta(a_0)[/math].
  • 2. Если [math] \theta_1(a),\theta_2(a)[/math] — мультпликативные функции, то [math] \theta(a) = \theta_1(a)\theta_2(a) [/math] — тоже мультипликативная.
    • [math] \theta(1) = \theta_1(1)\theta_2(1) = 1[/math] и условия определения выполнены.

Свертка Дирихле

Определение:
Сверткой Дирихле двух мультипликативных функций f и g, называется функция вида:
[math] (f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})[/math]


Свойство. [math] (f*g) [/math]мультпликативна.
Доказательство свойства: [math] (m;n)=1 \text{ ,} (f*g)(mn) = \sum_{d|n} f(d)g(\frac{nm}{d}) = \sum_{d_1|n,d_2|m} f(d_1 d_2)g(\frac{nm}{d_1 d_2}) = [/math]
[math] = \sum_{d_1|n,d_2|m} f(d_1) f(d_2)g(\frac{n}{d_1}) g(\frac{m}{d_2}) = (\sum_{d_1|n} f(d_1)g(\frac{n}{d_1}))*(\sum_{d_2|m} f(d_2)g(\frac{m}{d_2})) [/math] ч.т.д.