Терпеливая сортировка — различия между версиями
(→Литература) |
(→Алгоритм) |
||
Строка 2: | Строка 2: | ||
== Алгоритм == | == Алгоритм == | ||
− | + | Имеем массив <tex>source [0..n]</tex>, элементы которого нужно отсортировать по возрастанию. Разложим элементы массива по стопкам: для того чтобы положить элемент в стопку, требуется выполнение условия — новый элемент меньше элемента, лежащего на вершине стопки; либо создадим новую стопку справа от уже имеющихся и сделаем её вершиной наш элемент. Используем жадную стратегию: каждый элемент кладётся в самую левую стопку из возможных, если же таковой нет, справа от существующих стопок создаётся новая. | |
+ | Для получения отсортированного массива выполним <tex>n</tex> шагов: на <tex>i</tex>-м шаге выберем из всех вершин стопок наименьшую, извлечём её и запишем в массив <tex>ans [0..n]</tex> на <tex>i-1</tex>-ю позицию. | ||
+ | Длина наибольшей возрастающей подпоследовательности равна количеству стопок. Для получения наибольшей возрастающей подпоследовательности при формировании стопок проведём следующие операции: каждый раз, положив элемент на вершину стопки, будем создавать указатель на возможный предыдущий элемент (вершину ближайшей слева стопки). В конце для получения наибольшей возрастающей подпоследовательности нужно выполнить <tex>p</tex> шагов, начав с вершины самой правой стопки: на <tex>i</tex>-м шаге записать в <tex>lis[0..p-1]</tex>,где <tex>p</tex> — количество стопок, на <tex>p-i</tex>-ю позицию текущий элемент, перейти к предыдущему элементу по указателю. | ||
== Реализация == | == Реализация == |
Версия 00:54, 7 июня 2014
Терпеливая сортировка (англ. patience sorting) - алгоритм сортировки с худшей сложностью
. Позволяет также вычислить длину наибольшей возрастающей подпоследовательности данного массива.Содержание
Алгоритм
Имеем массив
, элементы которого нужно отсортировать по возрастанию. Разложим элементы массива по стопкам: для того чтобы положить элемент в стопку, требуется выполнение условия — новый элемент меньше элемента, лежащего на вершине стопки; либо создадим новую стопку справа от уже имеющихся и сделаем её вершиной наш элемент. Используем жадную стратегию: каждый элемент кладётся в самую левую стопку из возможных, если же таковой нет, справа от существующих стопок создаётся новая. Для получения отсортированного массива выполним шагов: на -м шаге выберем из всех вершин стопок наименьшую, извлечём её и запишем в массив на -ю позицию. Длина наибольшей возрастающей подпоследовательности равна количеству стопок. Для получения наибольшей возрастающей подпоследовательности при формировании стопок проведём следующие операции: каждый раз, положив элемент на вершину стопки, будем создавать указатель на возможный предыдущий элемент (вершину ближайшей слева стопки). В конце для получения наибольшей возрастающей подпоследовательности нужно выполнить шагов, начав с вершины самой правой стопки: на -м шаге записать в ,где — количество стопок, на -ю позицию текущий элемент, перейти к предыдущему элементу по указателю.Реализация
тест
Пример
тест
Ссылки
Литература
- Sergei Bespamyatnikh and Michael Segal Pacific Inst. for the Math. Sci. Preprints, PIMS-99-3., pp.7–8