Куча Бродала-Окасаки — различия между версиями
Nastya (обсуждение | вклад) (→Insert) |
Nastya (обсуждение | вклад) (→Insert) |
||
| Строка 35: | Строка 35: | ||
=== Insert === | === Insert === | ||
| − | Это создание нового BPQ и < | + | Это создание нового BPQ и <math>\mathrm{merge}</math> его с основным деревом. |
<code> | <code> | ||
'''pair(int, bpq)''' insert((x : '''int''', q : '''bpq'''), y : '''bpq''') | '''pair(int, bpq)''' insert((x : '''int''', q : '''bpq'''), y : '''bpq''') | ||
Версия 09:31, 11 июня 2014
Куча Бродала-Окасаки (англ. Brodal's and Okasaki's Priority Queue) — основана на использовании биномиальной кучи без каскадных ссылок, что позволяет делать за , добавлении минимального элемента, позволяет получать минимальный элемент за , и идеи Data-structural bootstrapping, позволяющей выполнить за . Удаление минимума работает за в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей.
Содержание
Структура
Используем идею, которую Тарьян и Буксбаум называют Data-structural bootstrapping.
Создадим структуру Bootstrapping Priority Queues, которая будет хранить пару из минимального элемента и приоритетную очередь. Элементами приоритетной очереди будут Bootstrapping Priority Queues упорядоченные по . Это можно записать так:
Куча из одного элемента будет выглядеть так
Данная структура не будет бесконечной, так как каждый раз в приоритетной очереди будет храниться на один элемент меньше, таким образом образуя иерархическую структуру. Каждое значение храниться в одном из значений .
Операции
Merge
Слияние выполняется выбором минимума из двух значений и добавлением в приоритетную очередь второго BPQ.
pair(int, bpq) merge((x : int, q : bpq) : pair, (y : int, r : bpq) : pair)
if x < y
return (x, insert(q, (y, r)))
else
return (y, insert(r, (x, q)))
Здесь это добавление в приоритетную очередь работает за , тогда работает за .
Insert
Это создание нового BPQ и его с основным деревом.
pair(int, bpq) insert((x : int, q : bpq), y : bpq)
return merge((x,q), create(y))
Создание и выполняются за , тогда работает за .
getMin
Выполняется просто, так как BPQ хранит минимум.
int getMin((x : int, q : bpq))
return x;
Очевидно, работает за
extractMin
Минимальный элемент хранится в верхнем BPQ, по этому его поиск не нужен. Требуется извлечение минимума из приоритетной очереди BPQ'ов.
pair (int, bpq) extractMin(pair(x : int, q : bpq))
((y,r), t) = extractMin(q)
return (y, merge(r, t))
Здесь — это функция, извлекающая минимальный элемент типа BPQ из приоритетной очереди, она возвращает — минимальный элемент типа BPQ и остаток от приоритетной очереди после извлечение минимума — . — функция, выполняющая слияние двух приоритетных очередей.
Возвращаем BPQ, где — новый минимальный элемент, и приоритетная очередь без элемента .
Так как и выполняются за , тогда выполняется за .