PSRS-сортировка — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Анализ)
(Анализ)
Строка 111: Строка 111:
 
При <tex>n</tex> элементах и <tex>p</tex> процессорах начальная сортировка выполнится за <tex dpi=145>O( \frac {n\log(n/p)}{p})</tex>. Выбор порядка <tex>p</tex> элементов в каждом процессоре произойдёт за <tex>O(p)</tex>, их сортировать мы будем с помощью [[Быстрая сортировка|быстрой сортировки]], а так же учитывая, что их количество порядка <tex>p</tex>, то можно сказать, что они сортируются за <tex>O(p^2\log(p^2))=O(p^2\log(p))</tex>.  
 
При <tex>n</tex> элементах и <tex>p</tex> процессорах начальная сортировка выполнится за <tex dpi=145>O( \frac {n\log(n/p)}{p})</tex>. Выбор порядка <tex>p</tex> элементов в каждом процессоре произойдёт за <tex>O(p)</tex>, их сортировать мы будем с помощью [[Быстрая сортировка|быстрой сортировки]], а так же учитывая, что их количество порядка <tex>p</tex>, то можно сказать, что они сортируются за <tex>O(p^2\log(p^2))=O(p^2\log(p))</tex>.  
  
После обмена данными будет произведено слияние <tex>p</tex> массивов в каждом процессоре. Также мы должны помнить, что при равномерном распределении данных длина сливаемых массивов будет <tex dpi=145>\frac {n}{p^2}</tex>, а <tex>\mathrm {merge} </tex> двух массивов выполняется за сумму их длин. Поэтому <tex>\mathrm {merge} </tex> займёт <tex dpi=145> O(\sum \limits_{k=2}^{p} \frac {k \cdot n}{p^2})=O(\frac {n \cdot p \cdot (p+1)}{2p^2}-\frac {n}{p^2})=O(n)</tex>.  <br>                                                    
+
После обмена данными будет произведено слияние <tex>p</tex> массивов в каждом процессоре. Также мы должны помнить, что при равномерном распределении данных длина сливаемых массивов будет <tex dpi=145>\frac {n}{p^2}</tex>, а <tex>\mathrm {merge} </tex> двух массивов выполняется за сумму их длин. Поэтому <tex>\mathrm {merge} </tex> займёт <tex dpi=145> O(\sum \limits_{k=2}^{p} \frac {k \cdot n}{p^2})=O(\frac {n \cdot p \cdot (p+1)}{2p^2}-\frac {n}{p^2})=O(n)</tex>.  <br>  
 +
Откуда получаем итоговую асимптотику:     
 +
                                           
 
<tex dpi=145> O(\frac {n\log(n/p)}{p})+O(p^2\log(p))+O(n)+O(p)</tex> <br>
 
<tex dpi=145> O(\frac {n\log(n/p)}{p})+O(p^2\log(p))+O(n)+O(p)</tex> <br>
Отсюда получим: <br>
+
Что равно: <br>
 
<tex dpi=145>O(\frac {n\log(n/p)}{p}+p^2\log(p)+n+p)O(\frac {n\log(n/p)}{p})=O(\frac {n\log(n/p)}{p})</tex>.
 
<tex dpi=145>O(\frac {n\log(n/p)}{p}+p^2\log(p)+n+p)O(\frac {n\log(n/p)}{p})=O(\frac {n\log(n/p)}{p})</tex>.
  

Версия 13:03, 12 июня 2014

Описание

Parallel Sorting by Regular Sampling — параллельная сортировка, разработанная Ханмао Ши, Рисажем Канселом и Джонатаном Шеффером в 1992 году. Имеет два преимущества по сравнению с быстрой сортировкой:

  • сохраняет размер списка более сбалансированным на протяжении всего процесса
  • избегает повторных перестановок ключей

Алгоритм

  • Начало
  • Шаг 1 Исходный массив в [math]n[/math] элементов разделим поровну между [math]p[/math] процессорами.
  • Шаг 2 На каждом процессоре запускам быструю сортировку.
  • Шаг 3 Формируем вспомогательный массив из элементов каждого процессора под индексами [math]0,\frac {n} {p^2}, \frac {2n}{p^2},...,\frac {(p-1)n}{p^2}[/math].
  • Шаг 4 Сортируем вспомогательный массив с помощью быстрой сортировки.
  • Шаг 5 Формируем массив разделителей из элементов вспомогательного массива под индексами [math] p + [\frac {p} {2}] - 1, 2p + [\frac {p}{2}] - 1,...,(p-1)p + [\frac {p}{2}] - 1[/math].
  • Шаг 6 Делим данные в процессорах с помощью массива разделителей следующим образом. Пусть [math]a_1, a_2,..., a_j[/math] — разделители. Тогда данные в каждом процессоре разобьём на группы элементов, попадающие в соответствующие полуинтервалы [math](-\infty,a_1],(a_1,a_2],...,(a_j,+\infty)[/math].
  • Шаг 7 Сливаем соответствующие группы элементов в массивы. Слияние будем производить поочерёдно, то есть сначала сольём первую группу со второй потом результат с третей и так далее. В итоге получим отсортированный набор данных.
  • Шаг 8 Данные из процессоров поочерёдно записываем в исходный массив. Данные отсортированы.
  • Конец

Пример

Количество элементов [math]27[/math], количество процессоров [math]3[/math]. Исходный набор данных:

[math][15, 46, 48, 93, 39, 6, 72, 91, 14, 36, 69, 40, 89, 61, 97, 12, 21, 54, 53, 97, 84, 58, 32, 27, 33, 72, 20][/math]:

Описание этапа 1 процессор 2 процессор 3 процессор
Разделение между процессорами 15 46 48 93 39 6 72 91 14 36 69 40 89 61 97 12 21 54 53 97 84 58 32 27 33 72 20
После сортировки частей 6 14 15 39 46 48 72 91 93 12 21 36 40 54 61 69 89 97 20 27 32 33 53 58 72 84 97
Выбор элементов 6 14 15 39 46 48 72 91 93 12 21 36 40 54 61 69 89 97 20 27 32 33 53 58 72 84 97


Описание этапа Данные
Выбранные элементы 6 39 72 12 40 69 20 33 72
После сортировки 6 12 20 33 39 40 69 72 72
Выбор элементов 6 12 20 33 39 40 69 72 72
Разделители 33 69


Описание этапа 1 процессор 2 процессор 3 процессор
После сортировки частей 6 14 15 39 46 48 72 91 93 12 21 36 40 54 61 69 89 97 20 27 32 33 53 58 72 84 97
После обмена данными 6 14 15 12 21 20 27 32 33 39 46 48 36 40 54 61 69 53 58 72 91 93 89 97 72 84 97
После слияния 6 12 14 15 20 21 27 32 33 36 39 40 46 48 53 54 58 61 69 72 72 84 89 91 93 97 97

Анализ

При [math]n[/math] элементах и [math]p[/math] процессорах начальная сортировка выполнится за [math]O( \frac {n\log(n/p)}{p})[/math]. Выбор порядка [math]p[/math] элементов в каждом процессоре произойдёт за [math]O(p)[/math], их сортировать мы будем с помощью быстрой сортировки, а так же учитывая, что их количество порядка [math]p[/math], то можно сказать, что они сортируются за [math]O(p^2\log(p^2))=O(p^2\log(p))[/math].

После обмена данными будет произведено слияние [math]p[/math] массивов в каждом процессоре. Также мы должны помнить, что при равномерном распределении данных длина сливаемых массивов будет [math]\frac {n}{p^2}[/math], а [math]\mathrm {merge} [/math] двух массивов выполняется за сумму их длин. Поэтому [math]\mathrm {merge} [/math] займёт [math] O(\sum \limits_{k=2}^{p} \frac {k \cdot n}{p^2})=O(\frac {n \cdot p \cdot (p+1)}{2p^2}-\frac {n}{p^2})=O(n)[/math].
Откуда получаем итоговую асимптотику:

[math] O(\frac {n\log(n/p)}{p})+O(p^2\log(p))+O(n)+O(p)[/math]
Что равно:
[math]O(\frac {n\log(n/p)}{p}+p^2\log(p)+n+p)O(\frac {n\log(n/p)}{p})=O(\frac {n\log(n/p)}{p})[/math].

См. также