Евклидовы кольца — различия между версиями
м |
м (→Свойства) |
||
Строка 24: | Строка 24: | ||
==Свойства== | ==Свойства== | ||
#В евклидовых кольцах единственно разложение на множители. | #В евклидовых кольцах единственно разложение на множители. | ||
− | #<tex>a\cdot b\vdots p \Rightarrow a\vdots p \lor b\vdots p</tex><br> | + | #<tex>a\cdot b\vdots p \Rightarrow a\vdots p \lor b\vdots p</tex> <br> Пусть <tex>gcd(a,p)=1 \Rightarrow 1=a\cdot x+p\cdot y; x,y \in \mathbb{R} \Rightarrow b=a\cdot b\cdot x + p\cdot b\cdot y \vdots p \Rightarrow b\vdots p</tex> |
− | Пусть <tex>gcd(a,p)=1 \Rightarrow 1=a\cdot x+p\cdot y; x,y \in \mathbb{R} \Rightarrow b=a\cdot b\cdot x + p\cdot b\cdot y \vdots p \Rightarrow b\vdots p</tex> | + | #Если а и b - не [[Единицы (обратимые элементы), группа обратимых элементов|обратимы]], то <tex>\|a\cdot b\|>\|b\|</tex><br> Пусть <tex>b=k\cdot a\cdot b+r;r\neq 0;\|r\|<\|a\cdot b\|\Rightarrow r=b-k\cdot a\cdot b\Rightarrow \|r\|=\|b\cdot(1-k\cdot a)\|>\|b\|</tex> |
Версия 04:04, 14 октября 2010
Определение: |
Евклидово кольцо - кольцо, в котором существует алгоритм евклида. |
Определение: |
Евклидово кольцо - это область целостности , для которой определена евклидова норма , причем , для представление |
Примеры
- , тогда
, кроме того
- , т.e.
Алгоритм Евклида
Изначально даны
,
,
...........................
,
.
Число является НОД чисел и . Алгоритм заканчивает свою работу, поскольку может строго превосходить лишь конечное количество других таких чисел.
Свойства
- В евклидовых кольцах единственно разложение на множители.
Пусть- Если а и b - не обратимы, то
Пусть