Точка сочленения, эквивалентные определения — различия между версиями
Строка 7: | Строка 7: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | (2) Точка сочленения графа <tex>G</tex> - вершина, при удалении которой в <tex>G</tex> увеличивается число компонент связности.}} | + | (2) Точка сочленения графа <tex>G</tex> - вершина, при удалении которой в <tex>G</tex> увеличивается число компонент связности. |
+ | }} | ||
{{Лемма | {{Лемма | ||
Строка 18: | Строка 19: | ||
(2 ⇒ 1) Пусть <tex>v</tex> принадлежала только одному блоку <tex>C</tex>. Все вершины <tex>u_1...u_n</tex>, смежные с <tex>v</tex>, также лежат в <tex>C</tex> (в силу рефлексивности отношения вершинной двусвязности). Теперь удалим <tex>v</tex>. Но <tex>u_1...u_n</tex> были концами ребер, удаленных из <tex>C</tex> вместе с <tex>v</tex>, поэтому между каждой парой из них остался путь. | (2 ⇒ 1) Пусть <tex>v</tex> принадлежала только одному блоку <tex>C</tex>. Все вершины <tex>u_1...u_n</tex>, смежные с <tex>v</tex>, также лежат в <tex>C</tex> (в силу рефлексивности отношения вершинной двусвязности). Теперь удалим <tex>v</tex>. Но <tex>u_1...u_n</tex> были концами ребер, удаленных из <tex>C</tex> вместе с <tex>v</tex>, поэтому между каждой парой из них остался путь. | ||
Рассмотрим <tex>D</tex> - компоненту связности, в которой лежала <tex>v</tex>. Пусть между вершинами <tex>u, w \in D</tex> существовал путь, проходящий через <tex>v</tex>. Но он проходил также через некоторые вершины из <tex>u_1...u_n</tex>, связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. | Рассмотрим <tex>D</tex> - компоненту связности, в которой лежала <tex>v</tex>. Пусть между вершинами <tex>u, w \in D</tex> существовал путь, проходящий через <tex>v</tex>. Но он проходил также через некоторые вершины из <tex>u_1...u_n</tex>, связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. | ||
+ | }} | ||
+ | |||
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Следующие утверждения эквивалентны: | ||
+ | (1) <tex>v</tex> - точка сочленения графа <tex>G</tex>; | ||
+ | |||
+ | (2) существуют такие вершины <tex>u</tex> и <tex>w</tex>, отличные от <tex>v</tex>, что <tex>v</tex> принадлежит любому простому пути из <tex>u</tex> в <tex>w</tex>; | ||
+ | |||
+ | (3) существует разбиение множества вершин <tex>V \setminus \{v\}</tex> на такие два подмножества <tex>U</tex> и <tex>W</tex>, что для любых вершин <tex>u \in U</tex> и <tex>w \in W</tex> вершина <tex>v</tex> принадлежит любому простому пути из <tex>u</tex> в <tex>w</tex>. | ||
+ | |||
+ | |proof= | ||
+ | (1 ⇒ 3) Так как <tex>v</tex> - точка сочленения графа <tex>G</tex>, то граф <tex>G \setminus v</tex> не связен и имеет по крайней мере две компоненты. Образуем разбиение <tex>V \setminus \{v\}</tex>, отнеся к <tex>U</tex> вершины одной из этих компонент, а к <tex>W</tex> - вершины всех остальных компонент. Тогда любые две вершины <tex>u \in U</tex> и <tex>w \in W</tex> лежат в разных компонентах графа <tex>G \setminus v</tex>. Следовательно, любой простой путь из <tex>u</tex> в <tex>w</tex> графа <tex>G</tex> содержит <tex>v</tex>. | ||
+ | |||
+ | (3 ⇒ 2) Следует из того, что (2) - частный случай (3). | ||
+ | |||
+ | (2 ⇒ 1) Если <tex>v</tex> принадлежит любому простому пути в <tex>G</tex>, соединяющему <tex>u</tex> и <tex>w</tex>, то в <tex>G</tex> нет простого пути, соединяющего эти вершины в <tex>G \setminus v</tex>. Поскольку <tex>G \setminus v</tex> не связен, то <tex>v</tex> - точка сочленения графа <tex>G</tex>. | ||
}} | }} |
Версия 06:49, 14 октября 2010
Следующие определения являются эквивалентными:
Определение: |
(1) Точка сочленения графа - вершина, принадлежащая как минимум двум блокам . |
Определение: |
(2) Точка сочленения графа | - вершина, при удалении которой в увеличивается число компонент связности.
Лемма: |
Определения (1) и (2) эквивалентны. |
Доказательство: |
(1 ⇒ 2) Пусть вершина принадлежит некоторым блокам и . Вершине инцидентны некоторые ребра и . Ребра и находятся в различных блоках, поэтому не существует пары непересекающихся путей между их концами. Один из этих путей может состоять только из , поэтому любой путь, соединяющий и , пройдет через . При удалении между и не останется путей, и одна из компонент связности распадется на две.(2 ⇒ 1) Пусть Рассмотрим принадлежала только одному блоку . Все вершины , смежные с , также лежат в (в силу рефлексивности отношения вершинной двусвязности). Теперь удалим . Но были концами ребер, удаленных из вместе с , поэтому между каждой парой из них остался путь. - компоненту связности, в которой лежала . Пусть между вершинами существовал путь, проходящий через . Но он проходил также через некоторые вершины из , связность которых не нарушилась, поэтому есть как минимум еще один путь, отличный от удаленного. Противоречие: число компонент связности не увеличилось. |
Теорема: |
Следующие утверждения эквивалентны:
(1) - точка сочленения графа ;(2) существуют такие вершины (3) существует разбиение множества вершин и , отличные от , что принадлежит любому простому пути из в ; на такие два подмножества и , что для любых вершин и вершина принадлежит любому простому пути из в . |
Доказательство: |
(1 ⇒ 3) Так как - точка сочленения графа , то граф не связен и имеет по крайней мере две компоненты. Образуем разбиение , отнеся к вершины одной из этих компонент, а к - вершины всех остальных компонент. Тогда любые две вершины и лежат в разных компонентах графа . Следовательно, любой простой путь из в графа содержит .(3 ⇒ 2) Следует из того, что (2) - частный случай (3). (2 ⇒ 1) Если принадлежит любому простому пути в , соединяющему и , то в нет простого пути, соединяющего эти вершины в . Поскольку не связен, то - точка сочленения графа . |