Обход в ширину — различия между версиями
AKhimulya (обсуждение | вклад) м (→Реализация) |
AKhimulya (обсуждение | вклад) (добавлены примеры задач) |
||
Строка 1: | Строка 1: | ||
'''Обход в ширину''' (Поиск в ширину, англ. ''BFS'', ''Breadth-first search'') — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами. | '''Обход в ширину''' (Поиск в ширину, англ. ''BFS'', ''Breadth-first search'') — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами. | ||
− | == | + | == Описание алгоритма == |
− | |||
− | |||
Пусть задан невзвешенный граф <tex> G = (V, E) </tex>, в котором выделена исходная вершина <tex>s</tex>. Для алгоритма нам потребуются очередь, которая сначала содержит только <tex> s </tex>, и множество посещенных вершин <tex> X </tex>, которое изначально тоже содержит только <tex> s </tex>. На каждом шаге алгоритм вынимает из начала очереди вершину, рассматривает все исходящие из нее ребра и добавляет все связанные с ней непосещенные вершины в <tex> X </tex> и в конец очереди. Если очередь пуста, то алгоритм завершает работу. | Пусть задан невзвешенный граф <tex> G = (V, E) </tex>, в котором выделена исходная вершина <tex>s</tex>. Для алгоритма нам потребуются очередь, которая сначала содержит только <tex> s </tex>, и множество посещенных вершин <tex> X </tex>, которое изначально тоже содержит только <tex> s </tex>. На каждом шаге алгоритм вынимает из начала очереди вершину, рассматривает все исходящие из нее ребра и добавляет все связанные с ней непосещенные вершины в <tex> X </tex> и в конец очереди. Если очередь пуста, то алгоритм завершает работу. | ||
Строка 11: | Строка 9: | ||
Также можно для каждой вершины <tex> t \in V </tex> считать длину этого пути, равную <tex> d[t] </tex>. Можно считать, что для непосещенных вершин эта длина бесконечно велика. Тогда на каждом шаге длина пути до <tex> t </tex> равна <tex> \rho(s, t) </tex>, если <tex> t </tex> посещена и <tex> \infty </tex> в противном случае. Отсюда следует, что если на каждом шаге обновлять длины путей, то информация о множестве <tex> X </tex> является избыточной, и его можно не хранить. | Также можно для каждой вершины <tex> t \in V </tex> считать длину этого пути, равную <tex> d[t] </tex>. Можно считать, что для непосещенных вершин эта длина бесконечно велика. Тогда на каждом шаге длина пути до <tex> t </tex> равна <tex> \rho(s, t) </tex>, если <tex> t </tex> посещена и <tex> \infty </tex> в противном случае. Отсюда следует, что если на каждом шаге обновлять длины путей, то информация о множестве <tex> X </tex> является избыточной, и его можно не хранить. | ||
− | + | == Анализ времени работы == | |
Оценим время работы для входного графа <tex>G = (V, E)</tex>. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> deg\ v </tex> ребер, инцидентных ей. Так как <tex> \sum\limits_{v \in V} deg\ v = 2|E| </tex>, то время, используемое на работу с ребрами, составляет <tex> O(|E|) </tex>. Поэтому общее время работы алгоритма поиска в ширину — <tex> O(|V| + |E|) </tex>. | Оценим время работы для входного графа <tex>G = (V, E)</tex>. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют <tex> O(1) </tex> времени, так что общее время работы с очередью составляет <tex> O(|V|) </tex> операций. Для каждой вершины <tex> v </tex> рассматривается не более <tex> deg\ v </tex> ребер, инцидентных ей. Так как <tex> \sum\limits_{v \in V} deg\ v = 2|E| </tex>, то время, используемое на работу с ребрами, составляет <tex> O(|E|) </tex>. Поэтому общее время работы алгоритма поиска в ширину — <tex> O(|V| + |E|) </tex>. | ||
− | + | == Корректность == | |
{{Утверждение | {{Утверждение | ||
Строка 41: | Строка 39: | ||
}} | }} | ||
− | + | == Реализация == | |
Предложенная ниже функция возвращает расстояние между вершинами source и destination. E - список ребер, Q - очередь. Множество <tex> X </tex> не хранится, вместо него используются расстояния в дереве обхода в ширину. Заметим, что расстояние от вершины source до вершины u, хранится в поле d[u]. | Предложенная ниже функция возвращает расстояние между вершинами source и destination. E - список ребер, Q - очередь. Множество <tex> X </tex> не хранится, вместо него используются расстояния в дереве обхода в ширину. Заметим, что расстояние от вершины source до вершины u, хранится в поле d[u]. | ||
Строка 57: | Строка 55: | ||
Q.push(v) | Q.push(v) | ||
'''return''' d[destination] | '''return''' d[destination] | ||
+ | |||
+ | == Примеры задач == | ||
+ | === 0-1 BFS === | ||
+ | Пусть в графе разрешены ребра веса 0 и 1, необходимо найти кратчайший путь между двумя вершинами. Для решения данной задачи модифицируем приведенный выше алгоритм следующим образом: вместо очереди будем использовать [[Персистентный_дек|дек]], а вместо добавления вершины в конец будем добавлять вершину в начало, если рассматриваемое ее ребро имеет вес 0, а иначе в конец. Соответственно релаксируем расстояние до вершины. Таким образом, в начале дека всегда будет вершина, расстояние до которой меньше либо равно расстоянию до остальных вершин дека, и инвариант [[#Корректность | расположения элементов в деке в порядке неубывания]] сохраняется. Значит, алгоритм корректен на том же основании, что и обычный BFS. Очевидно, что каждая вершина войдет в дек не более двух раз, значит, асимптотика у данного алгоритма та же, что и у обычного BFS. | ||
+ | === 1-k BFS === | ||
+ | Пусть в графе разрешены ребра веса <tex>1..k</tex>, необходимо найти кратчайший путь между двумя вершинами. Представим ребро <tex>uv</tex> веса <tex>m</tex> как последовательность ребер <tex>uu_1u_2..u_{m - 1}v</tex> (где <tex>u_1..u_{m - 1}</tex> - новые вершины). Применим данную операцию ко всем ребрам графа <tex>G(V, E)</tex>. Получим граф, состоящий (в худшем случае) из <tex>k|E|</tex> ребер и <tex>|V| + (k - 1)|E|</tex> вершин. Для нахождения кратчайшего пути следует запустить BFS на новом графе. Асимптотикой данного алгоритма является <tex> O(|V| + (2k - 1)|E|) </tex>. | ||
== Источники информации == | == Источники информации == |
Версия 13:36, 3 декабря 2014
Обход в ширину (Поиск в ширину, англ. BFS, Breadth-first search) — один из простейших алгоритмов обхода графа, являющийся основой для многих важных алгоритмов для работы с графами.
Содержание
Описание алгоритма
Пусть задан невзвешенный граф
, в котором выделена исходная вершина . Для алгоритма нам потребуются очередь, которая сначала содержит только , и множество посещенных вершин , которое изначально тоже содержит только . На каждом шаге алгоритм вынимает из начала очереди вершину, рассматривает все исходящие из нее ребра и добавляет все связанные с ней непосещенные вершины в и в конец очереди. Если очередь пуста, то алгоритм завершает работу.Поиск в ширину также может построить дерево поиска в ширину. Изначально оно состоит из одного корня
. Когда мы добавляем непосещенную вершину в очередь, то добавляем ее и ребро, по которому мы до нее дошли, в дерево. Поскольку каждая вершина может быть посещена не более одного раза, она имеет не более одного родителя. После окончания работы алгоритма для каждой достижимой из вершины путь в дереве поиска в ширину соответствует кратчайшему пути от до в .Также можно для каждой вершины
считать длину этого пути, равную . Можно считать, что для непосещенных вершин эта длина бесконечно велика. Тогда на каждом шаге длина пути до равна , если посещена и в противном случае. Отсюда следует, что если на каждом шаге обновлять длины путей, то информация о множестве является избыточной, и его можно не хранить.Анализ времени работы
Оценим время работы для входного графа
. В очередь добавляются только непосещенные вершины, поэтому каждая вершина посещается не более одного раза. Операции внесения в очередь и удаления из нее требуют времени, так что общее время работы с очередью составляет операций. Для каждой вершины рассматривается не более ребер, инцидентных ей. Так как , то время, используемое на работу с ребрами, составляет . Поэтому общее время работы алгоритма поиска в ширину — .Корректность
Утверждение: |
В очереди поиска в ширину расстояние вершин до монотонно неубывает. |
Докажем это утверждение индукцией по числу выполненных алгоритмом шагов. База: изначально очередь содержит только одну вершину Переход: пусть после с расстоянием 0, утверждение верно. -ого шага алгоритма очередь содержит вершин с расстоянием и вершин с расстоянием . Тогда на -ом шаге мы извлечем из очереди одну вершину и добавим в нее все непосещенные( вершин), связанные с ней; расстояние до них, очевидно, будет равно . У нас останется (возможно, 0) вершин с расстоянием и вершин с расстоянием k + 1, что соответствует нашему инварианту. |
Теорема: |
Алгоритм поиска в ширину в невзвешенном графе находит длины кратчайших путей до всех достижимых вершин. |
Доказательство: |
Допустим, что это не так. Выберем из вершин, для которых кратчайшие пути от найдены некорректно, ту, настоящее расстояние до которой минимально. Пусть это вершина , и она имеет своим предком в дереве обхода в ширину , а предок в кратчайшем пути до — вершина .Так как — предок в кратчайшем пути, то , и расстояние до w найдено верно, . Значит, .Так как Расстояние до — предок в дереве обхода в ширину, то . найдено некорректно, поэтому . Подставляя сюда два последних равенства, получаем , то есть, . Из ранее доказанной леммы следует, что в этом случае вершина попала в очередь и была обработана раньше, чем . Но она соединена с , значит, не может быть предком в дереве обхода в ширину, мы пришли к противоречию, следовательно, найденные расстояния до всех вершин являются кратчайшими. |
Реализация
Предложенная ниже функция возвращает расстояние между вершинами source и destination. E - список ребер, Q - очередь. Множество
не хранится, вместо него используются расстояния в дереве обхода в ширину. Заметим, что расстояние от вершины source до вершины u, хранится в поле d[u].int BFS(E: list<int, int>, source: int, destination: int) d.fill() d[source] = 0 Q = Q.push(source) while Q q = Q.pop() for <q, v> in E if d[v] == d[v] = d[q] + 1 Q.push(v) return d[destination]
Примеры задач
0-1 BFS
Пусть в графе разрешены ребра веса 0 и 1, необходимо найти кратчайший путь между двумя вершинами. Для решения данной задачи модифицируем приведенный выше алгоритм следующим образом: вместо очереди будем использовать дек, а вместо добавления вершины в конец будем добавлять вершину в начало, если рассматриваемое ее ребро имеет вес 0, а иначе в конец. Соответственно релаксируем расстояние до вершины. Таким образом, в начале дека всегда будет вершина, расстояние до которой меньше либо равно расстоянию до остальных вершин дека, и инвариант расположения элементов в деке в порядке неубывания сохраняется. Значит, алгоритм корректен на том же основании, что и обычный BFS. Очевидно, что каждая вершина войдет в дек не более двух раз, значит, асимптотика у данного алгоритма та же, что и у обычного BFS.
1-k BFS
Пусть в графе разрешены ребра веса
, необходимо найти кратчайший путь между двумя вершинами. Представим ребро веса как последовательность ребер (где - новые вершины). Применим данную операцию ко всем ребрам графа . Получим граф, состоящий (в худшем случае) из ребер и вершин. Для нахождения кратчайшего пути следует запустить BFS на новом графе. Асимптотикой данного алгоритма является .Источники информации
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4
- Поиск в ширину на e-maxx.ru
- Wikipedia — Breadth-first search
- Wikipedia — Поиск в ширину
- Визуализатор алгоритма