Теорема о временной иерархии — различия между версиями
(→Доказательство) |
|||
Строка 5: | Строка 5: | ||
== Доказательство == | == Доказательство == | ||
− | Зафиксируем < | + | Зафиксируем <tex>f\,\!</tex> и <tex>g\,\!</tex>. |
Рассмотрим язык <tex>L = \{ \langle m,x \rangle \mid m( \langle m,x \rangle)</tex> не допускает, работая не более <tex> f(| \langle m,x \rangle |)\,\!</tex> времени <tex>\}\,\!</tex> . | Рассмотрим язык <tex>L = \{ \langle m,x \rangle \mid m( \langle m,x \rangle)</tex> не допускает, работая не более <tex> f(| \langle m,x \rangle |)\,\!</tex> времени <tex>\}\,\!</tex> . | ||
Строка 19: | Строка 19: | ||
Следовательно такой машины не существует. Таким образом, <tex>L \notin DTIME(f)</tex>. | Следовательно такой машины не существует. Таким образом, <tex>L \notin DTIME(f)</tex>. | ||
− | <tex>L \in DTIME(g)</tex>. Возьмеме такую машину Тьюринга <tex>m_1\,\!</tex>, которой дается на вход пара <tex> \langle m_2,x \rangle \in L</tex> и она симулирует | + | <tex>L \in DTIME(g)</tex>. Возьмеме такую машину Тьюринга <tex>m_1\,\!</tex>, которой дается на вход пара <tex> \langle m_2,x \rangle \in L</tex> и она симулирует <tex>f(| \langle m_2,x \rangle |)\,\!</tex> шагов машины <tex>m_2\,\!</tex> на входе <tex>x\,\!</tex>. Если <tex>m_2\,\!</tex> завершила работу и не допустила, то <tex>m_1\,\!</tex> допускает <tex> \langle m_2,x \rangle \,\!</tex>. В другом случае не допускает. <tex>L(m_1) = L</tex> и <tex>m_1</tex> будет работать не более <tex>g(| \langle m_2,x \rangle |)\,\!</tex> времени, так как <tex> \lim \limits_{n \rightarrow \infty} \frac{t(f(n))}{g(n)} = 0</tex> по условию. |
Получается, что <tex>L \in DTIME(g(n)) \setminus DTIME(f(n))</tex> и <tex>L \neq \emptyset</tex>. Следовательно, <tex>DTIME(g(n)) \neq DTIME(f(n))</tex> | Получается, что <tex>L \in DTIME(g(n)) \setminus DTIME(f(n))</tex> и <tex>L \neq \emptyset</tex>. Следовательно, <tex>DTIME(g(n)) \neq DTIME(f(n))</tex> | ||
Теорема доказана. | Теорема доказана. |
Версия 18:35, 18 марта 2010
Формулировка
Пусть можно просимулировать
шагов машины Тюринга на другой машине Тьюринга за время .Для любых двух конструируемых по времени функций и таких, что , выполняется .
Доказательство
Зафиксируем
и .Рассмотрим язык
не допускает, работая не более времени .Пусть
, тогда для него есть машина Тьюринга такая, что .Рассмотрим
.Пусть
допускает . Тогда , в силу определения . Но в по определению не может быть пары , которую допускает , так как . Таким образом, получаем противоречие.Если
не допускает , то не принадлежит языку . Это значит, что либо допускает , либо не допускает, работая больше времени . Но , поэтому на любом входе работает не более времени. Получаем противоречие.Следовательно такой машины не существует. Таким образом,
.. Возьмеме такую машину Тьюринга , которой дается на вход пара и она симулирует шагов машины на входе . Если завершила работу и не допустила, то допускает . В другом случае не допускает. и будет работать не более времени, так как по условию.
Получается, что
и . Следовательно,Теорема доказана.