Теорема Понтрягина-Куратовского — различия между версиями
м (Добавлены категории) |
(→Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2) |
||
Строка 1: | Строка 1: | ||
+ | {{Теорема | ||
+ | |statement = | ||
+ | Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных <tex> K_{5} </tex>, и не содержит подграфов, гомеоморфных <tex> K_{3, 3} </tex> . | ||
+ | |proof = | ||
+ | === Необходимость === | ||
+ | Необходимость условия очевидна. | ||
+ | === Достаточность === | ||
+ | От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. | ||
+ | ==== G связен ==== | ||
+ | Если <tex> G </tex> не связен, то его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен. | ||
+ | ==== G - обыкновенный граф ==== | ||
+ | В самом деле, пусть в графе <tex> G </tex> есть петля или кратное ребро <tex> e </tex>. Тогда граф <tex> G - e </tex> планарен. Добавляя ребро <tex> e </tex> к графу <tex> G - e </tex> получим, что граф <tex> G </tex> он планарен. | ||
+ | ==== G - блок ==== | ||
+ | Пусть, от противного, в графе есть точка сочленения <tex> v </tex>. Через <tex> G_1 </tex> обозначим подграф графа <tex> G </tex>, порождённый вершинами одной из компонент связности графа <tex> G - v</tex> и вершинной <tex> v </tex>, а через | ||
+ | <tex> G_2 </tex> подграф графа <tex> G </tex>, порождённый вершинами остальных компонент связности графа <tex> G - v </tex> и вершиной <tex> v </tex>. (рис. 1) | ||
+ | |||
+ | |||
==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== | ==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== | ||
Рассмотрим 2 случая. | Рассмотрим 2 случая. | ||
Строка 69: | Строка 86: | ||
Таким образом, доказано, что в графе G имеется подграф, гомеоморфный <tex>K_{3,3}</tex> или <tex>K_5</tex>, что противоречит нашему первому предположению.<br> | Таким образом, доказано, что в графе G имеется подграф, гомеоморфный <tex>K_{3,3}</tex> или <tex>K_5</tex>, что противоречит нашему первому предположению.<br> | ||
+ | }} | ||
==Литература== | ==Литература== |
Версия 04:08, 20 октября 2010
Теорема: |
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . |
Доказательство: |
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен.G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен.G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1)
Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин 2. Пусть пара вершин 2.1. Пусть 2.1.1 Пусть 2.1.2. Пусть 2.1.3. Пусть Теперь рассмотрим случаи, когда хотя бы одна из вершин 2.2. Пусть 2.2.1. Пусть 2.2.2. Пусть 2.2.3. Пусть 2.3. Пусть 2.3.1. Пусть цепи 2.3.2. Пусть цепи |
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы