Теорема Понтрягина-Куратовского — различия между версиями
| Строка 17: | Строка 17: | ||
Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе верхней грани. Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) | Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе верхней грани. Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) | ||
[[Файл:p-k.2.png|thumb|right|рис. 2]] | [[Файл:p-k.2.png|thumb|right|рис. 2]] | ||
| − | + | Соединим два экземпляра вершины <tex> v </tex> пучком жордановых линий, не допуская лишних пересечений с укладками графов <tex> G_1 </tex> и <tex> G_2 </tex>, состоящим из такого количества линий, какова степень вершины <tex> v </tex> в графе <tex> G_2 </tex>. Далее отбросим вхождение вершины <tex> v </tex> в граф <tex> G_2 </tex>, заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) | |
| + | [[Файл:p-k.3.png|thumb|right|рис. 3]] | ||
| + | Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | ||
==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== | ==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== | ||
Версия 05:21, 20 октября 2010
| Теорема: |
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . |
| Доказательство: |
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен. G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен. G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1) Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2) Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) Таким образом мы получили укладку графа на плоскости, что невозможно. Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин и является -разделяющей. 2. Пусть пара вершин и не является -разделяющей. 2.1. Пусть и лежат на , т.е. и (рис. 2). 2.1.1 Пусть лежит на . 2.1.2. Пусть . 2.1.3. Пусть лежит на . Теперь рассмотрим случаи, когда хотя бы одна из вершин и не лежит на . Без ограничения общности будем считать, что это вершина , т.е (поскольку лежит на ). 2.2. Пусть . 2.2.1. Пусть лежит на . 2.2.2. Пусть . 2.2.3. Пусть лежит на . 2.3. Пусть (рис. 9). 2.3.1. Пусть цепи и имеют более одной общей точки. 2.3.2. Пусть цепи и имеют точно одну общую точку . |
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы


