Теорема Понтрягина-Куратовского — различия между версиями
Строка 17: | Строка 17: | ||
Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе верхней грани. Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) | Возьмём укладку графа <tex> G_1 </tex> на плоскости такую, что вершина <tex> v </tex> лежит на границе верхней грани. Затем во внешней грани графа <tex> G_1 </tex> возьмём укладку графа <tex> G_2 </tex> такую, что вершина <tex> v </tex> будет представлена на плоскости в двух экземплярах. (рис. 2) | ||
[[Файл:p-k.2.png|thumb|right|рис. 2]] | [[Файл:p-k.2.png|thumb|right|рис. 2]] | ||
− | + | Соединим два экземпляра вершины <tex> v </tex> пучком жордановых линий, не допуская лишних пересечений с укладками графов <tex> G_1 </tex> и <tex> G_2 </tex>, состоящим из такого количества линий, какова степень вершины <tex> v </tex> в графе <tex> G_2 </tex>. Далее отбросим вхождение вершины <tex> v </tex> в граф <tex> G_2 </tex>, заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3) | |
+ | [[Файл:p-k.3.png|thumb|right|рис. 3]] | ||
+ | Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | ||
==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== | ==== Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' ==== |
Версия 05:21, 20 октября 2010
Теорема: |
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . |
Доказательство: |
СодержаниеНеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть - такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен.G - обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен.G - блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1)Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2)Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)Таким образом мы получили укладку графа на плоскости, что невозможно.Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин 2. Пусть пара вершин 2.1. Пусть 2.1.1 Пусть 2.1.2. Пусть 2.1.3. Пусть Теперь рассмотрим случаи, когда хотя бы одна из вершин 2.2. Пусть 2.2.1. Пусть 2.2.2. Пусть 2.2.3. Пусть 2.3. Пусть 2.3.1. Пусть цепи 2.3.2. Пусть цепи |
Литература
- Асанов М,, Баранский В., Расин В. - Дискретная математика - Графы, матроиды, алгоритмы