Теорема Понтрягина-Куратовского — различия между версиями
м (Добавлены категории, замена некоторых дефисов длинными тире) |
|||
Строка 1: | Строка 1: | ||
+ | __TOC__ | ||
+ | |||
{{Теорема | {{Теорема | ||
|statement = | |statement = | ||
Строка 6: | Строка 8: | ||
Необходимость условия очевидна. | Необходимость условия очевидна. | ||
=== Достаточность === | === Достаточность === | ||
− | От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> | + | От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Пусть <tex> G </tex> — такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин. |
==== G связен ==== | ==== G связен ==== | ||
Если <tex> G </tex> не связен, то его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен. | Если <tex> G </tex> не связен, то его компоненты связности планарны и, следовательно, сам граф <tex> G </tex> планарен. | ||
− | ==== G | + | ==== G — обыкновенный граф ==== |
В самом деле, пусть в графе <tex> G </tex> есть петля или кратное ребро <tex> e </tex>. Тогда граф <tex> G - e </tex> планарен. Добавляя ребро <tex> e </tex> к графу <tex> G - e </tex> получим, что граф <tex> G </tex> он планарен. | В самом деле, пусть в графе <tex> G </tex> есть петля или кратное ребро <tex> e </tex>. Тогда граф <tex> G - e </tex> планарен. Добавляя ребро <tex> e </tex> к графу <tex> G - e </tex> получим, что граф <tex> G </tex> он планарен. | ||
− | ==== G | + | ==== G — блок ==== |
Пусть, от противного, в графе есть точка сочленения <tex> v </tex>. Через <tex> G_1 </tex> обозначим подграф графа <tex> G </tex>, порождённый вершинами одной из компонент связности графа <tex> G - v</tex> и вершинной <tex> v </tex>, а через | Пусть, от противного, в графе есть точка сочленения <tex> v </tex>. Через <tex> G_1 </tex> обозначим подграф графа <tex> G </tex>, порождённый вершинами одной из компонент связности графа <tex> G - v</tex> и вершинной <tex> v </tex>, а через | ||
<tex> G_2 </tex> подграф графа <tex> G </tex>, порождённый вершинами остальных компонент связности графа <tex> G - v </tex> и вершиной <tex> v </tex>. (рис. 1) | <tex> G_2 </tex> подграф графа <tex> G </tex>, порождённый вершинами остальных компонент связности графа <tex> G - v </tex> и вершиной <tex> v </tex>. (рис. 1) | ||
Строка 21: | Строка 23: | ||
Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | Таким образом мы получили укладку графа <tex> G </tex> на плоскости, что невозможно. | ||
<br/> <br/> | <br/> <br/> | ||
− | Пусть <tex> e = ab </tex> | + | Пусть <tex> e = ab </tex> — произвольное ребро графа <tex> G </tex>, <tex> G' = G - e </tex>. |
# граф <tex> G' </tex> планарен в силу минимальности графа <tex> G </tex>. | # граф <tex> G' </tex> планарен в силу минимальности графа <tex> G </tex>. | ||
# граф <tex> G' </tex> связен в силу отсутствия в графе <tex> G </tex> мостов. | # граф <tex> G' </tex> связен в силу отсутствия в графе <tex> G </tex> мостов. | ||
Строка 29: | Строка 31: | ||
# Если <tex> |VB| >= 3 </tex>, то существует цикл графа G', содержащий вершины <tex> a </tex> и <tex> b </tex>. | # Если <tex> |VB| >= 3 </tex>, то существует цикл графа G', содержащий вершины <tex> a </tex> и <tex> b </tex>. | ||
# Если <tex> |VB| = 2 </tex>, то в <tex> B </tex> имеется ребро <tex> e' = ab </tex>, но тогда в <tex> G </tex> имеются кратные рёбра <tex> e </tex> и <tex> e' </tex>, что невозможно. | # Если <tex> |VB| = 2 </tex>, то в <tex> B </tex> имеется ребро <tex> e' = ab </tex>, но тогда в <tex> G </tex> имеются кратные рёбра <tex> e </tex> и <tex> e' </tex>, что невозможно. | ||
− | # Если вершины <tex> a </tex> и <tex> b </tex> лежат в разных блоках графа <tex> G' </tex>, что существует точка сочленения <tex> v </tex>, принадлежащая любой простой (a, b)-цепи графа <tex> G' </tex>. Через <tex> G'_1 </tex> обозначим подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами компоненты связности графа <tex> G' - v </tex>, содержащей <tex> a </tex>, а через <tex> G'_2 </tex> - подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами остальных компонент связности графа <tEx> G' - v </tex> (в этом множестве лежит вершина <tex> b </tex>). Пусть <tex> G''_1 = G'_1 + e_1 </tex>, где <tex> e_1 = vb </tex> | + | # Если вершины <tex> a </tex> и <tex> b </tex> лежат в разных блоках графа <tex> G' </tex>, что существует точка сочленения <tex> v </tex>, принадлежащая любой простой (a, b)-цепи графа <tex> G' </tex>. Через <tex> G'_1 </tex> обозначим подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами компоненты связности графа <tex> G' - v </tex>, содержащей <tex> a </tex>, а через <tex> G'_2 </tex> - подграф графа <tex> G' </tex>, порождённый вершиной <tex> v </tex> и вершинами остальных компонент связности графа <tEx> G' - v </tex> (в этом множестве лежит вершина <tex> b </tex>). Пусть <tex> G''_1 = G'_1 + e_1 </tex>, где <tex> e_1 = vb </tex> — новое ребро (рис. 4) |
[[Файл:p-k.4.png|thumb|right|рис. 4]] | [[Файл:p-k.4.png|thumb|right|рис. 4]] | ||
Заметим, что в графе <tex> G''_1 </tex> рёбер меньше, чем в графе <tex> G </tex>. Действительно, вместо ребра <tex> e </tex> в <tex> G''_1 </tex> есть ребро <tex> e_1 </tex> и часть рёбер из графа <tex> G </tex> осталась в графе <tex> G''_2 </tex>. Аналогично, в графе <tex> G''_2 </tex> рёбер меньше, чем в графе <tex> G </tex>. <br/> | Заметим, что в графе <tex> G''_1 </tex> рёбер меньше, чем в графе <tex> G </tex>. Действительно, вместо ребра <tex> e </tex> в <tex> G''_1 </tex> есть ребро <tex> e_1 </tex> и часть рёбер из графа <tex> G </tex> осталась в графе <tex> G''_2 </tex>. Аналогично, в графе <tex> G''_2 </tex> рёбер меньше, чем в графе <tex> G </tex>. <br/> | ||
Строка 72: | Строка 74: | ||
{{Лемма | {{Лемма | ||
|statement = | |statement = | ||
− | 1) Любая внешняя часть встречает цикл <tex>C</tex> точно в двух точках, одна из которых лежит в <tex>C(a,b)</tex>, а другая | + | 1) Любая внешняя часть встречает цикл <tex>C</tex> точно в двух точках, одна из которых лежит в <tex>C(a,b)</tex>, а другая — в <tex>C(b,a)</tex>. |
|proof = | |proof = | ||
Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно (см. рис. 9). | Если внешняя часть встречает цикл <tex>C</tex> точно в одной точке <tex>v</tex>, то <tex>v</tex> является точкой сочленения графа <tex>G</tex>, что невозможно (см. рис. 9). | ||
Строка 93: | Строка 95: | ||
{{Лемма | {{Лемма | ||
|statement = | |statement = | ||
− | 3) Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> | + | 3) Существует внешняя часть, встречающая <tex>C(a,b)</tex> в точке <tex>c</tex> и <tex>C(b,a)</tex> — в точке <tex>d</tex>, для которой найдётся внутренняя часть, являющаяся одновременно <tex>(a,b)</tex>-разделяющей и <tex>(c,d)</tex>-разделяющей (см. рис. 12). |
[[Файл:pict-6.jpg|center|120px|рис. 12]] | [[Файл:pict-6.jpg|center|120px|рис. 12]] | ||
|proof = | |proof = | ||
− | Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex>-разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex>. Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> | + | Пусть, от противного, лемма 3 неверна. Упорядочим <tex>(a,b)</tex>-разделяющие внутренние части в порядке их прикрепления к циклу <tex>C</tex> при движении по циклу от <tex>a</tex> до <tex>b</tex> и обозначим их соответственно через <tex>In_{1},In_{2},...</tex>. Пусть <tex>u_{1}</tex> и <tex>u_{2}</tex> — первая и последняя вершины из <tex>C(a,b)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex>, а <tex>v_{1}</tex> и <tex>v_{2}</tex> — первая и последняя вершины из <tex>C(b,a)</tex>, в которых <tex>In_{1}</tex> встречает цикл <tex>C</tex> (возможно, вообще говоря, <tex>u_{1} = u_{2}</tex> или <tex>v_{1} = v_{2}</tex>). Поскольку лемма 3 неверна, для любой внешней части обе её вершины, в которых она встречает <tex>C</tex>, лежат либо на <tex>C[v_{2},u_{1}]</tex>, либо на <tex>C[u_{2},v_{1}]</tex>. Тогда снаружи цикла <tex>C</tex> можно провести жорданову кривую <tex>P</tex>, не пересекая рёбер графа <tex>G'</tex>, соединяющую <tex>v_{2}</tex> с <tex>u_{1}</tex> (см. рис. 13). |
[[Файл:pict-7.jpg|center|160px|рис. 13]] | [[Файл:pict-7.jpg|center|160px|рис. 13]] | ||
Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью. | Поскольку на участках <tex>C(u_{1},u_{2})</tex> и <tex>C(v_{1},v_{2})</tex> нет точек прикрепления внешних частей, используя жорданову кривую <tex>P</tex>, внутреннюю часть <tex>In_{1}</tex> можно перебросить ("вывернуть" наружу от цикла <tex>C</tex>) во внешнюю область цикла <tex>C</tex>, т.е. уложить её снаружи от цикла <tex>C</tex> и сделать её внешней частью. | ||
Строка 102: | Строка 104: | ||
}} | }} | ||
− | |||
− | + | == Разбор случаев взаимного положения ''a, b, c, d, u1, u2, v1, v2'' == | |
Рассмотрим 2 случая. | Рассмотрим 2 случая. | ||
[[Файл:Case_1.png|thumb|right|рис. 1]] | [[Файл:Case_1.png|thumb|right|рис. 1]] | ||
Строка 123: | Строка 124: | ||
2.1.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br> | 2.1.3. Пусть <tex>u_2</tex> лежит на <tex>C(b, d)</tex>.<br> | ||
− | Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex> | + | Тогда в графе <tex>G</tex> есть подграф, гомеоморфный <tex>K_{3,3}</tex>(рис. 5).<br> |
<p> | <p> | ||
Строка 151: | Строка 152: | ||
2.3. Пусть <tex>v_2 = a</tex>(рис. 9).<br> | 2.3. Пусть <tex>v_2 = a</tex>(рис. 9).<br> | ||
− | Рассмотрим теперь пару вершин <tex>u_1</tex> и <tex>u_2</tex>. Будем считать, что <tex>u_1 = c</tex> и <tex>u_2 = d</tex>, поскольку все другие случаи расположения вершин <tex>u_1</tex> и <tex>u_2</tex> так же, как были рассмотрены все случаи расположения <tex>v_1</tex> и <tex>v_2</tex>. Пусть <tex>P_1</tex> и <tex>P_2</tex> | + | Рассмотрим теперь пару вершин <tex>u_1</tex> и <tex>u_2</tex>. Будем считать, что <tex>u_1 = c</tex> и <tex>u_2 = d</tex>, поскольку все другие случаи расположения вершин <tex>u_1</tex> и <tex>u_2</tex> так же, как были рассмотрены все случаи расположения <tex>v_1</tex> и <tex>v_2</tex>. Пусть <tex>P_1</tex> и <tex>P_2</tex> — соответственно кратчайшие простые <tex>(a, b)</tex>-цепь и <tex>(c, d)</tex>-цепь по внутренней части <tex>In</tex>(рис. 10). |
Заметим, что <tex>P_1</tex> и <tex>P_2</tex> имеют общую точку.<br> | Заметим, что <tex>P_1</tex> и <tex>P_2</tex> имеют общую точку.<br> | ||
Строка 171: | Строка 172: | ||
==Литература== | ==Литература== | ||
− | * Асанов М | + | * Асанов М., Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Укладки графов ]] | [[Категория: Укладки графов ]] |
Версия 09:49, 21 октября 2010
Содержание
Теорема: | ||||||||||||||||||||||||||||||||
Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . | ||||||||||||||||||||||||||||||||
Доказательство: | ||||||||||||||||||||||||||||||||
НеобходимостьНеобходимость условия очевидна. ДостаточностьОт противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть — такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.G связенЕсли не связен, то его компоненты связности планарны и, следовательно, сам граф планарен.G — обыкновенный графВ самом деле, пусть в графе есть петля или кратное ребро . Тогда граф планарен. Добавляя ребро к графу получим, что граф он планарен.G — блокПусть, от противного, в графе есть точка сочленения . Через обозначим подграф графа , порождённый вершинами одной из компонент связности графа и вершинной , а через подграф графа , порождённый вершинами остальных компонент связности графа и вершиной . (рис. 1)Возьмём укладку графа на плоскости такую, что вершина лежит на границе верхней грани. Затем во внешней грани графа возьмём укладку графа такую, что вершина будет представлена на плоскости в двух экземплярах. (рис. 2)Соединим два экземпляра вершины пучком жордановых линий, не допуская лишних пересечений с укладками графов и , состоящим из такого количества линий, какова степень вершины в графе . Далее отбросим вхождение вершины в граф , заменяя инцидентные её рёбра на жордановы линии, полученные из линий указанного пучка и рёбер (рис. 3)Таким образом мы получили укладку графа
В G' существует цикл, содержащий вершины a и bПусть и лежат в одном блоке графа .
Заметим, что в графе Отметим, что опять вершина представлена на плоскости в двух экземплярах. Очевидно, добавление ребра не меняет планарности графа . Склеим оба вхождения вершины точно так же, как это мы сделали в предыдущем пункте доказательства (рис. 6).Сотрем затем ранее добавленные ребра и . В результате мы получим укладку графа на плоскости, что невозможно. Утверждение доказано.Вспомогательные определения и утверждение об одновременно разделяющейся внутренней частиСреди всех укладок графа на плоскости и среди всех циклов , содержащих и , зафиксируем такую укладку и такой цикл, что внутри области, ограниченной циклом , лежит максимальное возможное число граней графа . Зафиксируем один из обходов по циклу (на рисунках будем рассматривать обход по часовой стрелке по циклу ). Для вершин и цикла через будем обозначать простую -цепь, идущую по циклу от до в направлении обхода цикла. Конечно, . Положим { }, т.е. получено из отбрасыванием вершин и .
В силу связности графа для любой внешней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
В силу связности графа для любой внутренней компоненты должны существовать рёбра в , соединяющие её с вершинами цикла .
Будем говорить, что внешняя (внутренняя) часть встречает цикл в своих точках прикрепления к циклу .
Аналогично можно ввести понятие -разделяющей внутренней части. Заметим, что внутрення часть может встречать цикл , вообще говоря, более чем в двух точках, но не менее чем в двух точках.
Разбор случаев взаимного положения a, b, c, d, u1, u2, v1, v2Рассмотрим 2 случая. 1. Пусть пара вершин 2. Пусть пара вершин 2.1. Пусть 2.1.1 Пусть 2.1.2. Пусть 2.1.3. Пусть Теперь рассмотрим случаи, когда хотя бы одна из вершин 2.2. Пусть 2.2.1. Пусть 2.2.2. Пусть 2.2.3. Пусть 2.3. Пусть 2.3.1. Пусть цепи 2.3.2. Пусть цепи | ||||||||||||||||||||||||||||||||
Литература
- Асанов М., Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы