Троичный сумматор — различия между версиями
Строка 5: | Строка 5: | ||
Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы). | Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы). | ||
− | В [[Троичная_логика |троичной логике]] "лжи" и "истине" соответствует <tex> | + | В [[Троичная_логика |троичной логике]] "лжи" и "истине" соответствует <tex>-</tex> и <tex>+</tex>. Третьему состоянию соответствует <tex>0</tex>. |
− | Мы будем рассматривать простую троичную схему — троичный сумматор. | + | Мы будем рассматривать простую троичную схему — троичный сумматор. Поэтому, вместо обозначений <tex>\{-, 0, +\}</tex>, мы используем <tex>\{0, 1, 2\}</tex>. |
== Логическое сложение по модулю 3 при одном неполном слагаемом== | == Логическое сложение по модулю 3 при одном неполном слагаемом== |
Версия 19:54, 28 декабря 2014
Определение: |
Функциональная схема (англ. Functional Flow Block Diagram) — документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом. Функциональная схема является экспликацией (поясняющим материалом) отдельных видов процессов, протекающих в целостных функциональных блоках и цепях устройства. |
Содержание
- 1 Принципы построения троичной функциональной схемы
- 2 Логическое сложение по модулю 3 при одном неполном слагаемом
- 3 Разряд переноса при сложении с неполным слагаемым
- 4 Троичный полусумматор с одним неполным слагаемым
- 5 Троичный полусумматор в несимметричной троичной системе счисления
- 6 Троичный вычитатель
- 7 См. также
- 8 Источники информации
Принципы построения троичной функциональной схемы
Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы).
В троичной логике "лжи" и "истине" соответствует и . Третьему состоянию соответствует .
Мы будем рассматривать простую троичную схему — троичный сумматор. Поэтому, вместо обозначений
, мы используем .Логическое сложение по модулю 3 при одном неполном слагаемом
Для сложения одного троичного разряда с разрядом переноса.
Результат не меняется при перемене мест операндов.
first | |||||||
second | |||||||
sum |
Разряд переноса при сложении с неполным слагаемым
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене ест операндов.
first | |||||||
second | |||||||
transfer |
Троичный полусумматор с одним неполным слагаемым
Первая ступень полного троичного сумматора.
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
transfer содержит разряд переноса, sum содержит сумму по модулю 3.
Результат операции занимает 1 и 2/3 троичных разряда.
Троичный полусумматор в несимметричной троичной системе счисления
Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю 3 в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».
В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает 1 и 2/3 троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.
transfer — перенос в n + 1, несимметричный.
sum — сумма по модулю 3, несимметричная.
Троичный вычитатель
Полный троичный одноразрядный вычитатель является неполной тринарной троичной логической функцией, так как в разряде займа только два значения 0 и 1. Результат имеет длину 1 и 2/3 троичных разряда. Результат изменяется при перемене мест операндов.
В разряде займа не бывает третьего значения троичного разряда (2), так как в «худшем» случае
, то есть в старшем разряде «1». Единица займа возникает в 9-ти случаях из 18.