Троичный сумматор — различия между версиями
Строка 133: | Строка 133: | ||
В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает <tex>1</tex> и <tex>2/3</tex> троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы. | В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает <tex>1</tex> и <tex>2/3</tex> троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | {| style="background-color:#CCC;margin:0.5px" | ||
+ | !style="background-color:#EEE"| <tex>\bf{x_1=x}</tex> | ||
+ | !style="background-color:#FFF"| <tex>2</tex> | ||
+ | !style="background-color:#FFF"| <tex>2</tex> | ||
+ | !style="background-color:#FFF"| <tex>2</tex> | ||
+ | !style="background-color:#FFF"| <tex>1</tex> | ||
+ | !style="background-color:#FFF"| <tex>1</tex> | ||
+ | !style="background-color:#FFF"| <tex>1</tex> | ||
+ | !style="background-color:#FFF"| <tex>0</tex> | ||
+ | !style="background-color:#FFF"| <tex>0</tex> | ||
+ | !style="background-color:#FFF"| <tex>0</tex> | ||
+ | !style="background-color:#EEE"| <tex>first</tex> | ||
+ | |- | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>\bf{x_0=y}</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>second</tex> | ||
+ | |- | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{sum}}</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>sum</tex> | ||
+ | |- | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{transfer}}</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>2</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>1</tex> | ||
+ | |style="background-color:#FFF;padding:2px 30px"| <tex>0</tex> | ||
+ | |style="background-color:#EEE;padding:2px 30px"| <tex>transfer</tex> | ||
+ | |} | ||
''transfer'' — перенос в <tex>n + 1</tex>, несимметричный. | ''transfer'' — перенос в <tex>n + 1</tex>, несимметричный. | ||
''sum'' — сумма по модулю <tex>3</tex>, несимметричная. | ''sum'' — сумма по модулю <tex>3</tex>, несимметричная. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Источники информации== | ==Источники информации== | ||
* [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы] | * [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы] | ||
* [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Википедия — Различные сумматоры] | * [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Википедия — Различные сумматоры] |
Версия 18:17, 29 декабря 2014
Определение: |
Функциональная схема (англ. Functional Flow Block Diagram) — документ, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом. Функциональная схема является экспликацией (поясняющим материалом) отдельных видов процессов, протекающих в целостных функциональных блоках и цепях устройства. |
Содержание
- 1 Принципы построения троичной функциональной схемы
- 2 Логическое сложение по модулю [math]3[/math] при одном неполном слагаемом
- 3 Разряд переноса при сложении с неполным слагаемым
- 4 Троичный полусумматор с одним неполным слагаемым
- 5 Троичный полусумматор в несимметричной троичной системе счисления
- 6 Источники информации
Принципы построения троичной функциональной схемы
Функциональная схема — вид графической модели изделия. Их использование и построение позволяет наглядно отразить устройство функциональных (рабочих) изменений, описание которых оперирует любыми (в том числе и несущественными) микросхемами, БИС и СБИС. Поскольку функциональные схемы не имеют собственной системы условных обозначений, их построение допускает сочетание кинематических, электрических и алгоритмических обозначений (для таких схем более подходящим термином оказывается комбинированные схемы).
В троичной логике "лжи" и "истине" соответствует и . Третьему состоянию соответствует .
Мы будем рассматривать простую троичную схему — троичный сумматор. Поэтому, вместо обозначений
, мы используем .Логическое сложение по модулю при одном неполном слагаемом
Для сложения одного троичного разряда с разрядом переноса.
Результат не меняется при перемене мест операндов.
Разряд переноса при сложении с неполным слагаемым
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене ест операндов.
Троичный полусумматор с одним неполным слагаемым
Первая ступень полного троичного сумматора.
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене мест операндов.
transfer содержит разряд переноса, sum содержит сумму по модулю
.Результат операции занимает
и троичных разряда.Троичный полусумматор в несимметричной троичной системе счисления
Троичное логическое сложение двух троичных разрядов с разрядом переноса в несимметричной троичной системе счисления.
Результат не изменяется при перемене мест операндов.
Троичный полусумматор можно рассматривать, как объединение двух бинарных троичных функций: «логического сложения по модулю
в троичной несимметричной системе счисления» и «разряд переноса при сложении двух полных троичных разрядов в троичной несимметричной системе счисления».В отличие от предыдущих бинарных троичных функций с одноразрядным результатом, результат функции занимает
и троичных разрядов, так как при сложении в троичной несимметричной системе в разряде переноса не бывает значения больше единицы.transfer — перенос в
, несимметричный.sum — сумма по модулю
, несимметричная.