Алгоритм Куна для поиска максимального паросочетания — различия между версиями
Freemahn (обсуждение | вклад) м (→Алгоритм) |
Freemahn (обсуждение | вклад) (→Теорема: Изменил дефис на тире) |
||
Строка 10: | Строка 10: | ||
: Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br> | : Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из <tex>x</tex> существовала и в исходном паросочетании.<br><br> | ||
: Пусть <tex>p</tex> {{---}} ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>. | : Пусть <tex>p</tex> {{---}} ближайшая к <tex>x</tex> вершина, которая принадлежит и новой дополняющей цепи и цепи <tex>(y \rightsquigarrow z)</tex>. | ||
− | : Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> | + | : Тогда <tex>MP</tex> - последнее ребро на отрезке <tex>(y \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>NP</tex> – последнее ребро на отрезке <tex>(z \rightsquigarrow p)</tex> цепи <tex>(y \rightsquigarrow z)</tex>, <tex>QP</tex> - последнее ребро лежащее на отрезке <tex>(x \rightsquigarrow p)</tex> новой дополняющей цепи(см. Рисунок 1).<br><br> |
: Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br> | : Допустим <tex>MP</tex> принадлежит паросочетанию <tex>M'</tex>, тогда <tex>NP</tex> ему не принадлежит.<br> | ||
:: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br> | :: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br> |
Версия 16:59, 11 января 2015
Содержание
Теорема
Теорема: |
Если из вершины не существует дополняющей цепи относительно паросочетания и паросочетание получается из изменением вдоль дополняющей цепи, тогда из не существует дополняющей цепи в . |
Доказательство: |
|
Алгоритм
Задан граф
, про который известно, что он двудольный, но разбиение не задано явно.Требуется найти наибольшее паросочетание в немАлгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.
В массиве
хранятся паросочетания (Если паросочетания с вершиной не существует, то = -1). А - обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды). Функция возвращает , если ей удалось найти увеличивающую цепь из вершины , при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.Внутри функции просматриваются все рёбра, исходящие из вершины
первой доли, и затем проверяется: если это ребро ведёт в ненасыщенную вершину , либо если эта вершина насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из , то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом производим чередование в текущем ребре: перенаправляем ребро, смежное с , в вершину .В основной программе сначала указывается, что текущее паросочетание — пустое (массив
заполняется числами -1). Затем перебирается вершина первой доли, и из неё запускается обход в глубину , предварительно обнулив массив .Стоит заметить, что размер паросочетания легко получить как число вызовов теоремы о максимальном паросочетании и дополняющих цепях и теоремы, описанной выше.
Реализация
- Граф хранится списками смежности
bool dfs(v: int): if (used[v]): return false used[v] = true; for to in g[v]: if (matching[to] == -1 or dfs(matching[to])): matching[to] = v return true return false
function main(): fill(matching, -1) for v in V: fill(used, false) dfs(v) for v in V: if (matching[v] != -1): print(v, " ", matching[v])
Время работы
- Итак, алгоритм Куна можно представить как серию из запусков обхода в глубину на всём графе.
- Следовательно, всего этот алгоритм исполняется за время , где — количество ребер, что в худшем случае есть .
- Более точная оценка:
- В описанной выше реализации запуски обхода в глубину/ширину происходят только из вершин первой доли, поэтому весь алгоритм исполняется за время , где — число вершин первой доли. В худшем случае это составляет , где — число вершин второй доли.
Ссылки
- Теорема о максимальном паросочетании и дополняющих цепях
- Алгоритм Форда-Фалкерсона для поиска максимального паросочетания
Источники
- MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.