Динамическое программирование по профилю — различия между версиями
(→Пример) |
(→Реализация) |
||
| Строка 82: | Строка 82: | ||
==='''Реализация'''=== | ==='''Реализация'''=== | ||
<font color=green>// n, m - размер таблицы </font> | <font color=green>// n, m - размер таблицы </font> | ||
| − | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
| − | '''for''' <tex>\mathtt{j} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{j} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
'''if''' можно перейти из <tex>\mathtt{i}</tex> в <tex>\mathtt{j}</tex> профиль | '''if''' можно перейти из <tex>\mathtt{i}</tex> в <tex>\mathtt{j}</tex> профиль | ||
<tex>\mathtt{d}[\mathtt{i}][\mathtt{j}]\ =\ \mathtt{1}</tex> | <tex>\mathtt{d}[\mathtt{i}][\mathtt{j}]\ =\ \mathtt{1}</tex> | ||
'''else''' | '''else''' | ||
<tex>\mathtt{d}[\mathtt{i}][\mathtt{j}]\ =\ \mathtt{0}</tex> | <tex>\mathtt{d}[\mathtt{i}][\mathtt{j}]\ =\ \mathtt{0}</tex> | ||
| − | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
<tex>\mathtt{a}[\mathtt{i}][0]\ = \mathtt{1}</tex> <font color=green >// Так как мы можем начать c любого профиля</font> | <tex>\mathtt{a}[\mathtt{i}][0]\ = \mathtt{1}</tex> <font color=green >// Так как мы можем начать c любого профиля</font> | ||
| − | '''for''' <tex>\mathtt{k} = \mathtt{1}.. \ | + | '''for''' <tex>\mathtt{k} = \mathtt{1}.. \verb|<<| \mathtt{m} - \mathtt{1} </tex> |
| − | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
| − | '''for''' <tex>\mathtt{j} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{j} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
<tex>\mathtt{a}[\mathtt{k}][\mathtt{i}] = \mathtt{a}[\mathtt{k}][\mathtt{i}] + \mathtt{a}[\mathtt{k} - 1][\mathtt{j}] \cdot \mathtt{d}[\mathtt{j}][\mathtt{i}]</tex> | <tex>\mathtt{a}[\mathtt{k}][\mathtt{i}] = \mathtt{a}[\mathtt{k}][\mathtt{i}] + \mathtt{a}[\mathtt{k} - 1][\mathtt{j}] \cdot \mathtt{d}[\mathtt{j}][\mathtt{i}]</tex> | ||
<tex>\mathtt{ans} = \mathtt{0}</tex> | <tex>\mathtt{ans} = \mathtt{0}</tex> | ||
| − | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \ | + | '''for''' <tex>\mathtt{i} = \mathtt{0}..(\mathtt{1} \verb|<<| \mathtt{n}) - \mathtt{1}</tex> |
<tex>\mathtt{ans} = \mathtt{ans} + \mathtt{a}[\mathtt{m} - \mathtt{1}][\mathtt{i}]</tex> <font color=green>// Так как мы можем закончить любым профилем </font> | <tex>\mathtt{ans} = \mathtt{ans} + \mathtt{a}[\mathtt{m} - \mathtt{1}][\mathtt{i}]</tex> <font color=green>// Так как мы можем закончить любым профилем </font> | ||
'''return''' <tex>\mathtt{ans}</tex> | '''return''' <tex>\mathtt{ans}</tex> | ||
Версия 23:44, 14 января 2015
| Определение: |
| Динамическое программирование по профилю (англ. dynamic programming with profile) — способ оптимизации перебора количества вариантов с помощью динамического программирования, когда одно из измерений небольшое. |
| Определение: |
| Профиль (англ. profile) — один из столбцов (строк), удовлетворяющий условию задачи. Обычно используется в качестве состояния динамики. |
Содержание
Общие принципы
Обычно дана таблица и надо посчитать количество замощений этой таблицы некоторыми фигурами (замощение шахматной доски доминошками). Можно перебрать все варианты и выбрать из них удовлетворяющие условию. Но можно воспользоваться методом динамического программирования по профилю и сократить время по одной размерности до линейной. Затем пусть у нас есть правило по которому надо заполнить и для него нам надо предыдущих линий. Тогда можно перебрать все замощения длиной . В итоге нужно заполнить данную таблицу этими замощениями. Получается, что если перебирать все варианты нам понадобиться времени, а если перебирать только состояния и переходить по ним нам потребуется времени (где — количество способов замощения одной клетки).
Задача о замощении домино
Условие
Найти количество способов замостить таблицу с помощью доминошек размерами .
Решение
Для удобства можно хранить профили в виде двоичных масок. В качестве состояния динамики будем использовать профили размерами . В этом профиле будет означать, что домино лежит горизонтально и заканчивается на этом столбце, иначе . Таких профилей будет . Теперь проверим из какого профиля в какой можно перейти.
Из профиля в профиль можно перейти если выполняются условия:
- Можно положить горизонтальные домино. То есть там где в профиле стоит , в профиле должен стоять .
- Можно доложить в оставшиеся клетки вертикальные домино. То есть оставшиеся в профиле должны образовывать четные подстроки.
Пусть если из профиля можно перейти в -ый, иначе .
Пусть так же — количество способов замощения первых столбцов и заканчивавшийся на -ом профиле. Тогда
Ответом будет , где — профиль, который может быть последним (т.е. все группы из имеют четные размеры).
Реализация
// n, m - размер таблицы for for if можно перейти из в профиль else // Так как мы можем начать только с профиля где все клетки 0 for for for for if можно закончить профилем return
Оценка сложности: подсчет , и подсчет в итоге .
Оценка памяти: , так же можно заметить что в массиве для состояния нам нужно только состояние, при такой реализации нужно будет . Еще можно не считать массив , а просто каждый раз перепроверять можем ли мы перейти в это состояние в итоге потребуется памяти, но нам потребуется больше времени , где время проверки возможности перехода из в равно и тогда время получается .
Задача о симпатичных узорах
Условие
Дана таблица , каждая клетка которой может быть окрашена в один из двух цветов: белый или черный. Симпатичным узором называется такая раскраска, при которой не существует квадрата , в котором все клетки одного цвета. Требуется найти количество симпатичных узоров для соответствующей таблицы.
Решение
Для удобства можно хранить профиля в виде двоичных масок. В качестве состояния динамики будем использовать профили размера . В этом профиле будет означать что клетка закрашена в черный цвет, и если в белый. Из профиля в -ый можно перейти если выполнено условие:
- если поставить и профиль рядом, то не должно быть квадратов одного цвета
Пусть если из профиля можно перейти в -ый, иначе .
Пусть так же — количество способов раскрашивания первые столбцов и заканчивавшийся на -ом профиле. Тогда
Ответом будет
Реализация
// n, m - размер таблицы for for if можно перейти из в профиль else for // Так как мы можем начать c любого профиля for for for for // Так как мы можем закончить любым профилем return
Оценка сложности: подсчет , и подсчет в итоге
Оценка памяти: , так же можно заметить что в массиве для состояния нам нужно только состояние, при такой реализации нужно будет . Еще можно не считать массив , а просто каждый раз перепроверять можем ли мы перейти в это состояние в итоге потребуется памяти, но нам потребуется больше времени , где время проверки возможности перехода из в равно и тогда время получается .
Динамика по изломанному профилю
| Определение: |
| Изломанный профиль (англ. broken profile) — обобщение прямого профиля на случай, когда обработанным является не целое число столбцов, а некоторое количество столбцов и несколько первых клеток следующего столбца. |
Это очень сильная оптимизация динамики по профилю. Идея в том, чтобы добиться как можно меньшего числа переходов (от одного профиля к другому).
Пример
Еще раз используем в качестве примера задачу о замощении. Базовая линия теперь будет ломаной: при прохождении через -ю горизонталь сверху вниз, она переходит на предыдущую вертикаль и спускается до низу. Теперь профиль — это не только маска, но ещё и место излома.
Профилем будет пара , в будет информация о маленьком квадратике слева от базовой линии, имеющем с ней общие точки; обозначает номер горизонтали, на которой произошел излом. Квадратики профиля будут нумероваться сверху вниз, так что угловой будет иметь номер . Горизонтали будем нумеровать с нуля, так что пробегает значения от до .
Пусть если из профиля = можно перейти в , иначе .
- Eсли , то , иначе ;
- Mожно так положить доминошку, накрывающую квадратик с номером , что после этого в будет храниться в точности информация о соответствующих квадратиках.
Проще говоря, доминошку можно класть только двумя способами — как показано на рисунках (на квадратик с номером можно положить не более одной вертикальной и горизонтальной доминошки). То, что потом получается после сдвига вниз излома, и будет новым профилем. Заметим, что если клетка занята, то доминошку уже не надо класть, и логично отождествить с . Условно пишется — "", однако, нужно всегда иметь в виду возможность .
Легко заметить, что количество профилей увеличилось в раз (добавилось число от до и еще один бит). Но зато количество переходов резко сократилось с до .
//Для профиля (p, i) выводятся все переходы из него (нумерация горизонталей начинается с нуля и i = 0..n - 1) // Функция bit(x,i), возвращающая единицу или ноль или i-й бит в двоичной записи числа x print_all_links(, ): if if println, " ", else println, " ", else if if println, " ", else println, " ", if && println, " ",
При такой реализации существует немало профилей только с одним переходом (например, у которых -й бит равен единице). Отождествим все профили с один переходом с теми, кто их них получается. Это будет выглядеть так: пусть (и только он) получается из , который, в свою очередь, получается из . Тогда имеются такие соотношения: , . Отождествить и — это, по сути, заменить эти два соотношение на одно, то есть теперь и , но , и так далее.
Таким образом, возможно сокращение профилей не менее чем вдвое. Дальнейшие оптимизации мы оставляем читателю.
В итоге получаем асимптотику . Она значительно лучше всего, что мы получали до сих пор, и это серьезный повод использовать изломанный профиль вместо обычного.