Пересечение полуплоскостей, связь с выпуклыми оболочками — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (очепятки)
Строка 1: Строка 1:
[[Файл:samplesHalfspaces.png|400px|thumb|right|Пересечение существует и выпукло, неограничено или пусто]]
+
[[Файл:samplesHalfspaces.png|400px|thumb|right|Пересечение существует и выпукло, неограниченно или пусто]]
  
Задача: есть конечное множество полуплоскотей, найти фигуру их пересечения или сообщить что оно пусто.
+
Задача: есть конечное множество полуплоскостей, найти фигуру их пересечения или сообщить что оно пусто.
  
 
Для начала заметим, что если пересечение не пусто, то оно выпукло. (Доказательство {{---}} Пересечение выпуклых фигур выпукло, а полуплоскость выпукла)
 
Для начала заметим, что если пересечение не пусто, то оно выпукло. (Доказательство {{---}} Пересечение выпуклых фигур выпукло, а полуплоскость выпукла)
Строка 20: Строка 20:
 
</tex>.  
 
</tex>.  
 
|proof=
 
|proof=
Для проверки предиката нужно определить знак выражения <tex> A''x_0 + B''y_0 + C'' </tex>, где <tex> (x_0, y_0) </tex> {{---}} точка пересечения прямых <tex> l' </tex> и <tex> l </tex>. Эту точку находится из уравнения <tex> \begin{pmatrix}  
+
Для проверки предиката нужно определить знак выражения <tex> A''x_0 + B''y_0 + C'' </tex>, где <tex> (x_0, y_0) </tex> {{---}} точка пересечения прямых <tex> l' </tex> и <tex> l </tex>. Эта точка находится из уравнения <tex> \begin{pmatrix}  
 
A & B\\  
 
A & B\\  
 
A' & B'  
 
A' & B'  

Версия 00:06, 10 февраля 2015

Пересечение существует и выпукло, неограниченно или пусто

Задача: есть конечное множество полуплоскостей, найти фигуру их пересечения или сообщить что оно пусто.

Для начала заметим, что если пересечение не пусто, то оно выпукло. (Доказательство — Пересечение выпуклых фигур выпукло, а полуплоскость выпукла)

Пусть полуплоскости заданы уравнениями прямых и ориентацией, с какой стороны от прямой лежит полуплоскость.

Сначала рассмотрим все полуплоскости, которые "смотрят", то есть ориентированны, вниз. Аналогично можно рассмотреть все полуплоскости, которые ориентированны вверх.

Лемма:
Нужна ли полуплоскость [math] l'' [/math]?
Предикат проверки (см. рисунок) того, что прямая [math] l'' : A''x + B''y + C'' = 0 [/math] лежит над пересечением прямых [math] l : Ax + By + C = 0 [/math] и [math] l' : A'x + B'y + C' = 0 [/math] равен знаку определителя [math] \begin{vmatrix} A & B & C \\ A' & B' & C' \\ A'' & B'' & C'' \end{vmatrix} [/math].
Доказательство:
[math]\triangleright[/math]

Для проверки предиката нужно определить знак выражения [math] A''x_0 + B''y_0 + C'' [/math], где [math] (x_0, y_0) [/math] — точка пересечения прямых [math] l' [/math] и [math] l [/math]. Эта точка находится из уравнения [math] \begin{pmatrix} A & B\\ A' & B' \end{pmatrix} \begin{pmatrix} x_0\\ y_0 \end{pmatrix} = \begin{pmatrix} -C\\ -C' \end{pmatrix} [/math]. Решением будет [math] \begin{pmatrix} x_0\\ y_0 \end{pmatrix} = \frac{ \begin{pmatrix} B' & -B\\ -A' & A \end{pmatrix} \begin{pmatrix} -C\\ -C' \end{pmatrix}} { \begin{vmatrix} A & B\\ A' & B' \end{vmatrix} } [/math]. Подставим это решение в [math] A''x_0 + B''y_0 + C'' [/math] и домножим на определитель.

[math] A'' (B'; -B)(-C; -C') + B'' (-A'; A)(-C; -C') + C \begin{vmatrix} A & B \\ A' & B' \end{vmatrix} = A'' \begin{vmatrix} B' & B \\ -C' & -C \end{vmatrix} - B'' \begin{vmatrix} A' & A \\ -C' & -C \end{vmatrix} + C'' \begin{vmatrix} A & A' \\ B & B' \end{vmatrix} = \begin{vmatrix} A'' & A' & A \\ B'' & B' & B \\ -C'' & -C' & -C \end{vmatrix} = \begin{vmatrix} A & B & C \\ A' & B' & C' \\ A'' & B'' & C'' \end{vmatrix} [/math]
[math]\triangleleft[/math]

Таким образом, если представить прямую [math] Ax + By + C = 0 [/math] как точку с однородными координатами [math] (A, B, C) [/math], то этот предикат — всего лишь поворот, а проверка предиката — проверка очередной точки в обходе Грэхема для нахождения выпуклой оболочки.

Алгоритм:

  • Отсортировать все полуплоскости по углу наклона;
  • Запустить обход Грэхема для полуплоскостей, смотрящих вниз (с предикатом-определителем);
  • Запустить обход Грэхема для полуплоскостей, смотрящих вверх;
  • Пересечь две цепочки.

От пересечения цепочек напрямую зависит фигура пересечения: неограниченная область получается если одна из цепочек пуста, а ограниченная — когда обе цепочки не пусты и пересекаются.

Источники